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VI The Llectrification of Two Parallel Circular Discs.
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304 DR. J. W. NICHOLSON ON THI

Part I
§ 1. Introductory.

The only problem relating to two electrified circular discs, placed parallel to each
other, for which an exact solution has been obtained hitherto, is the classical one of
Nosiur’s rings. This was solved by Riemany,* by an application of the Bessel-Fourier
integral method. In this problem the discs are circular electrodes fixed to two infinite
conducting planes, which are themselves connected together by the earth or by a wire at
infinity. If the axis of z is that of the two co-axial discs, and perpendicular to the infinite
plane conducting sheets, the electrical potential V satisfies LaprAcE’s equation at all
points between the plates, and the further conditions

(1) EV:()J z=4a, 9>
oz :

Y 4

(2) v A Z = -, 0 < py

VA oy

where A is a constant, 2¢ is the distance between the plates, bisected by the origin,

¢1 1s the radius of either disc, and p is the distance of any point from the axis of z. In

fact (2, ¢) are the two cylindrical polar co-ordinates on which V can alone depend.
By pre-supposing the existence of a form for V of the type

Ve [ 9 00 e 4 () e} 0, ()

clearly satisfying LaAPLACE’S equation when z is between 4-a, RIEMANN was able to
determine ¢ and ¢ in such a way as to make the derivate oV/oz take the prescribed

values all over the plane z =: ¢, and thus automatically over z == — @ also. For the
Bessel-Fourier theorem gives at once an integral of the form

N [P0 500 &

oz 0

for 6V /oz over any plane on which its value is completely known.

A subsequent paper by WrBERT and an earlier one by Kircunorr,] dealing with a
single circular disc, follow what is essentially a similar analysis, whose complete field of
application to physical problems has never been fully worked out.

The characteristic feature of the group of problems hitherto treated in this manner is
that a certain function—sometimes V and sometimes its normal derivate—is completely
prescribed over an infinite plane defined by a constant value of the co-ordinate z.

* Wirks, p. 58; ° Pogg. Ann.,” vol. 95, March, 1855.
T ¢ CreLie,” vol. 76, 1873.
i * Pogg. Aun.,’ vol. 64, 1845.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 305

The next stage of complexity in such problems occurs when neither V nor its normal
derivate is specified over the whole plane, but V is specified over a circular region on the
plane, and 0V/0z over the remainder. This occurs, for example, in the problem of a
single circular disc freely charged with electricity, where V is constant over the disc,
and oV /oz is zero over the rest of the plane. But we have no knowledge of V on the rest
of the plane or of 0V/oz over the dise, which determines the surface density of the
distribution—the object of our problem. V

The problem just mentioned is analytically identical with that of the velocity potential
of irrotational liquid flow through a circular aperture in an infinite plane screen, for if ¢
is the velocity potential of the motion, 0¢/dz is zero over the screen, and ¢ 18
constant on the aperture.

For problems of this type, no direct solution by the Bessel-Fourier method has yet
been found. Nevertheless, such problems often admit peculiarly neat solutions, found
indirectly, in this form. The usual procedure has been to use a form of harmonic
analysis, and then transform the solution into an integral form. Thus, if a circular disc
is freely charged with charge Q, and occupies the plane z = 0 from p = 0 to p = a, we
know that the surface density is

6= e .—_-_9_((12_92)—%

4 on 4ra

and oV/dn is zero outside. 'Thus by the Bessel-Fourier theorem

v Q !,w}‘ Ty (2p) dn r_-———-“J(’ Gu)

oG V(@ —p?)
Q r sin A
= = rd, (A A
a Jo 0 ( P) d A

When this is generalised on the positive side of the axis of z,

W Q.
m w jo Jo (hp) sin 2a da

and

Q0 %mﬁ
Vaaj T, (o) a

0

with the resulting capacity of the disc as

Qs =af[ 1000 <o
0

2a

—7; .

Similar solutions can be found at once for other physical problems relating to the
circular disc. For example, in the case of a circular magnetic shell of radius ¢ and
212
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306 DR. J. W. NICHOLSON ON THE

strength «, magnetised parallel to its axis, the magnetic potential Q has the
properties
O =2ro, 0<e<a,

=0, o >p>a.
Thus

0= j W, ) e d [ ud, () . 20 du
0 JO

00

— %rae j e T, (10) T, (ra) dn
0
on the positive side of the z-axis.
A uniform gravitating disc of mass M also admits a similar expression, most readily
found as follows :—-
The potential V at an external point on the axis of 2 is

V=20 (V@425 —2).
But

" —Az — V’
L e pdy (hp) dr = VACEEE)

Integrating with respect to p from zero to a,
” —-A2 d)\ . 2 2
al e Jl(m)T—\/(z +a*)—z
0
and therefore on the axis, with z positive,

2M * . dx
7 == Bt )\ —
Y ” joe Ji (ra) -
and at any point,

, 1(° _,. N

the alternative expressions being elliptic integrals or series of zonal harmonics.

It does not appear to have been noticed, in regard to solutions of such problems after
the present manner, that when the integrand consists of the product of e=**J(4p) and
- another Bessel function—sin la is effectively a Bessel function of order {—that function
is always of integer order for any rigid distribution of the system, for example, a rigid
distribution of magnetic doublets, as in a circular shell, or of attracting matter in the
last problem. On the other hand, in free distributions such as are found in electricity
or hydrodynamics, where the electricity or the fluid is free to move on or about the
surface, the order is always half an odd integer. The freely charged circular disc is one
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 307

instance. Another is the expression for the velocity potential ¢ created by a dise
moving broadside on in incompressible liquid, which is given by*

2V o d sin Ja
p= =] o0 G

where V is the velocity of the disc, and d/d2 (sin 2a/2) is effectively Jy, (a2).

Some general remarks concerning the nature of the difficulties which arise, in the
attempt to find direct solutions of other problems by the method of discontinuous
integrals, are of interest at this point. The essentials of the direct problem may be
realised by taking a simple case, such as the specification

¢ =F (o) ©>p>a z=10
a"b~—f(p 0<p<0 2=0

where ¢ is to be a solution of LAPLACE’S equation.
Let the unknown value of ¢ when 0 <o < @ on the plane be f, (o)
Then by the Bessel-Fourier theorem, the complete specification of ¢ on the plane is

b= 23,00 @ [ 100 3, () da + [ 27, G a2 | ()T, (20 0

@

and thus for all points with z positive,

b= [ 20,00 00 [ £ ) ] F ()0, (00

and

r0D

A { |
it =—| AJ (A A A
(&) ==[ 090 {[ @)+ F @)l 0wda,
where f, is unknown. Let now the value of (04/0z).-, be f, () when ¢ is greater than
a. This is also unknown.

Then directly we have also,

() ("33, 0000 [ ) + [ 1 ) ed, 00) .
\az z2=0 0 1 0 @ J

These expressions must be identical. To determine the two unknowns (fy, f;) we have
1o further information beyond the fact that f; (¢) and f, (p) are particular cases of two
solutions of LAPLACE’S equation with z equated to zero—and usually a known type of
behaviour of ¢ at infinity.

The mere identity of the two expressions could be secured by takmg

[iLF @)+ @)1 0T, 00) o = — [ {£u60) -+ 2F (@)}l Ou) da

* Lawms, ‘ Hydrodynamics,” Camb. Univ. Press.
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308 DR. J. W, NICHOLSON ON THE

but an infinite number of pairs of functions can in general be found with this property,
and there is no mode of selection of the pair with the necessary relation to LaPLACE’S
equation, if such a pair exists. In cases which we have tried, no such pair does exist,
and in taking the last step, we have lost the solution which is sought, and which appears
to be beyond the power of the theory of integral equations in its present state. "

These remarks illustrate the bearing of the problem on its direct side, and will be of
use later. They serve to indicate the nature of the limitations to the method of
discontinuous integrals, whose solutions are of great value from the facility with which
the solutions on the plane z = 0 can be generalised at once by introduction of the
factor ™. These solutions on the plane must, however, be found otherwise in the
first place, and have been found usually by a process of harmonic analysis.

In the present memoir, we take up the problem of two parallel electrified discs, on
the same axis, as the primary theme. In the course of its solution, other problems are
also solved. It is clear that this problem presents the next stage in difficulty, by the
method of discontinuous integrals, after those just mentioned. For the conditions are
that the potential V is constant on each disc, but we have no knowledge either of V
or 9V/on on the rest of the plane of either disc.

The mode of solution is, initially, by a harmonic analysis which treats the discs as
special cases of oblate spheroids. The necessary analysis preliminary to the problem
has been developed in an earlier memoir* and need not be repeated. We shall refer
continually to this memoir as * O.S.H.” The harmonic analysis itself does not effect
the solution, but it leads us to an integral equation of a new type, which is ultimately
solved. The value of the potential can then be expressed in a variety of ways, including
a Bessel-Fourier integral form.

§2. Transformation of Spheroidal Harmonics to a New Origin.

Some very interesting formulee which transform products of spheroidal harmonics
to harmonic series about another origin do not appear to have been noticed. We
shall only include, in this memoir, one which is especially fundamental for problems
of the type contemplated. Corresponding formule of other types may be found after
the same manner. '

If O, and O, are two origins on the axis of z, O, being at z = —c¢ on the left, and O,
at z = 0, any point ¢ of space, in a problem symmetrical about the axis of z, may be
defined by its cylindrical co-ordinates (z, ¢), where p is the perpendicular from e on the
z-axis, or by its spheroidal (oblate) co-ordinates with respect to the origins O, and O,.
Let these be, respectively, (u, ¢) and (u’, ¢’), the accent thus relating to the origin
z = ~—c. 'Then ' ' '

2=, p==ay/{(1 —p?) (14}
zto=a't, e=a{(l—p")0+L;

* ““ Oblate Spheroidal Harmonies,” ‘ Phil. Trans.” A, vol. 224, pp. 49-93.


http://rsta.royalsocietypublishing.org/

A

\

/%

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

.
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 309
the typical spheroids (¢, ¢') constant, of the two confocal systems being respectively

A (z -+ ¢)? o2 _
azc? —I a2 (1 + 2:2) =1, a2C’2 +@2 (1 .+_ 2;'2) 1.

Accordingly, the co-ordinates are related by

g,

—pf) (L1

MIC, —_
(L) (0 + 1) =

¢
@
(1

from which (', ¢’) relating to O, on the left, could be found. These relations are,
however, in themselves sufficient for our purpose.
Now the function

P, () ¢. (%)

is a solution of LarLACE’S equation, and our object is to expand it into a series of the
form

P, () 4. () = Z P, () p, (), (ela),

which must evidently exist, for a suitable range of values of the variables. If this can
be effected, we can express a potential function diverging from O, in a form suitable
for a function converging on O,. ‘
As a preliminary, we desire an expression of P, (u'), ¢, (¢') in the form of a definite
integral. In the theory of spherical harmonics, there is a well-known formula

|7 Qu BT /{0 =) (1 — T} cos $ dp = =P, (1) Qu (2),
where £ > u. Its analogue in terms of g-functions is readily shown to be

7P, (1) u () = [ g (s — e A0 —p) (L F )b eosphdp, . .. (1)

the right-hand side being only apparently complex. In this formula ¢ is not restricted,
when it is real. The proof can easily be supplied by the reader.
Thus,

FP, () u (€)= | g (W — o /AL =) (L + U} cos ¢} dp,

or, in terms of the new co-ordinates (u, ¢) for the origin O,,

nP, (0) ¢. (¢) = jq {f; bl — /{1 —p2) (1 ¢2)} cos qﬁ} dd.
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310 DR. J. W. NICHOLSON ON THE

We shall return to this formula later. In particular, with » == 0.
’ " c
gy (€)= o8 + < jag

e =pl — 1. /{(1 —p2) (L4 ¢?)} cos ¢.

Using the series development for ¢, in the integrand—it is convergent absolutely and
uniformly at least when ¢ > @, and actually under yet closer restrictions—and writing
cla = 2,

N 1 1.2 1 1.2.3.4 1
“q"(c)“L‘l¢{;\+e 2.3(7\—}—8)3_|_2.4.3.5(7\—|—s)5 }

. N2 4 i .

(112 L.L_Fhﬁiéia__...ﬂ _dg-

where

" 2.4°2!¢ 2.4.3.54!1 0\ oA ¢
__8in o/9n j" dé
oforn Jon e

Thus if
D = 0/0 (¢/a) = d8/c,

va dqﬂ/l?x—i—p«?;——c\/11~ﬂ +c2)}cos¢} oo (9

g, (8) =

The integral involved here must evidently itself be a solution of LarLace’s equation,
as can readily be verified. Its value, in one form, is easily shown to be #a/O,P or
aaly/{e? +22}. Thus, if ¢’ is related to an origin O, at a distance ¢ behind O, on

the z-axis,
no__ sin D ﬂ 0 ao [
v =" o~ <"””‘ ao> < > 0.7
where «? is the difference of squared semiaxes of the primary confocal spheroids, { = 0

and ¢ =0.
Now, by the “ inverse distance formula ” of * O.S.H.,”* namely,

o =Sy @ ) P p e ()

O

we at once deduce

0 (@) = 5200 () =3P @ O 0 (&) + R @ e @ (€)= |

@ a

when c¢/a 1s greater than ¢, as will occur in the applications contemplated, where the
formula is only employed in the immediate neighbourhood of the surface of a second
spheroid equal to the first, which it does not intersect. Thus

0 (&) = 2y @ E )P ) p () s D <;> B

# Loc. cit., p. 54.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 311

After the same manner we can proceed to the more general formula, since, for sufficiently
large values of
¢ +e=
- e=

+pl— /{0 =) (1 + €} cos g,

c
@

if ¢Ja == 2, we have

c o\ 2m) 1 1)+ 2) 1 ) 1
o <“ Fe) =g 1T (o)t 22043 T (Afe)yt T ik
Accordingly |
Py w) o (€)= [ an (& <) dp
where
s =l —oy/{(1—p?) (L4 ¢3)} cos ¢,
or
5 2" (n 1)? w42 1]
26 = 3 [0 o - S e
— _\n Qn% , n f —— ___D________..2
= (=) (2n+1)zD 11 2. (2n 4+ 3) | A
D~L ™ d¢
+2.4.(2n+z>,)(2n+5) T Ho Ate

_ (= )”Jz+(D) ntd T
@il D .

= () 2 @ &5

in the preceding notation. Finally, with the aid of the inverse distance formula,

OP

&/

P g @)=~ r (3] E(=rertR@e @ 20 (8] @

where D = 9/0 (c/a).
We are accordingly led to a consideration of the function K" (z) defined by

T 241 (0] 0% <
éK;»‘<x>=<—><>-f(-g,—g;)~> w@) .. ()

and in terms of this function
Pw) g (&) =5 £ (=Y @+ 1P ) p (DK (g) L (6)

which is the required formula of transformation.
YOL. CCXXIV.—A. 2 U
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312 DR. J. W. NICHOLSON ON THE

§ 3. The function K*(z).

By a formula of * O.5.H.”* ¢, (z) is given by

00 =) |, a0 5

T on (o w a1 (0f0m) [
K o) = (st | el ) O

so that
dx

V2
or .
- , I .
Ko@) = [ e, mlame ()

representing the function as a definite integral. This is in many ways the most con-
venient form of the function for our purposes. It shows, incidentally, that K,* (z) is
a function symmetrical in 7 and », and thus leads to a very remarkable property of the
spheroidal harmonics in the form

(il @ =t

where D = 9/0.

It is of some importance to obtain a series for K,/ (x) in ascending powers of 2~
This may be found most readily as follows :—-

By a well-known formulaf

| U'(n-7+41) S
Jn+% (7‘) Jr+% (7\) 2rr+l (n 4 ) r (T T3 )S

where
1 w143 AN (n 41+ 4)(n+r-5) A
R e [ e e e e el

z/

or in brief notation

2 OIS (n -7 -+ 2s 4 1)!
Tas 0t = 2 () s e e e T

p

and since all numbers are integers,

@w
j )\n+r+2s6")\xdw —_ (% wjr_ P + 28) 1 w—~n-—7‘~23~—1
0

and we find

N n 47! 1
K, (90) T (% T 2) T (T+ 2) (zw)7z+r+l I

* Loc. cit. p. b6.
1 Scmrirni, ¢ Math. Ann.” (I11), 1871, p. 141, and others.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 313

where F is a hypergeometric function with four numerators and four denominators, of
the form

F=F{im+r+1), ¥n+-r+2), tn+r+2), Fn-+r-+3);
nt+r+2, n+3 r+3; —4/2}. (9)
This satisfies a linear differential equation of the fourth order.

Other definite integrals which represent the function can be obtained readily. For
example, we know that

m
Tat ) Js () = 2 [0 (20 co8 ) 005 (n— 1)  dp
0
and therefore
) ® . A
KmmzheWL%a)Haﬂ

= f cos (n —7) ¢ clqﬁj e Joprsn (22 cOS P) d—x—k
0

by an obviously valid inversion of the order of integration.
Moreover,

2 (”I’& uaks + 1) Jn+r[1 (2)‘ Cos Sb) = 2) co8 Sb( ntr "[“ Jn+r+2)
and therefore
n — 2 ir . ~Ar f
K (z) = P — j cos 75 cos (n 7) ¢ d¢ [ dre™ {J 1, (2X cos </>)
‘ "[' nAr4 2 (27\ CO8 75)}'

But Heing and PINcHERLE have independently given the formula

® 2 2__1;
[, 3o = Loy

and we deduce

n 2 cos ¢ cos (n — 1) pdep \/(9;2 + 4 cos? ¢)— A"
K () = T (n -7 l—l)j V/ (@* 4 4 cos? ¢) J 2 cos ¢ }
V(@ 4 4 cos? $)\?
{1 ™ < 2 cos ¢ ) }
or on reduction,
o\ 1 g B \/<x2 | 4 cos? ) — g\
K, (»6)”;*"—-——*(% — 1)j0 cos (n—1) b ( s s > dp. . (10)

We proceed to find the linear differential equation satisfied by the function.

With —4jr =y, % =y3/dy,
I=x0/0x=—19, x=¢, S = o/e0.
202
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314 DR. J. W. NICHOLSON ON THE

The equation in y may be written down by inspection, from the general differential
equation for functions of hypergeometric type. Thus F satisfies

b1 S o422 (Sb 3 3) ) F
o O DO D (bt p 1) F =0,

or if r=¢,  20[0x=20[00 =F=—1
B—n—r—0F—n2—r—220-n—r—3)F

LSO —1) (=2 —1) (S = —2%—2) F—0.

Now K,"(w), or more briefly K, is proportional to z-"-"-'F, and accordingly

O—nn—r—1)O—n—1r—22—n—7r—38)F
== (S*‘"%**T—-—l) (S—-n_.q«_g)ﬂ(gman._mg) Kebntr+n

—_— e(n+r+])0 S’ (3 . 1)2 (S — 2) K
and

SO —2m—1)(S—2—1) (Y —2n —2 —2)F

_..._.e(7l+r+1)0 (S’+%+T+ 1) (S‘—I“T'—"n) (S__l_%____r)(s____%'—-?"‘“ 1)K,
and finally

(Y12 ($—2) K +:”§:- (9 —(ntrt1) (92— (n—rp) K=0 (11)

is the required differential equation.

§ 4. The value of K,° ().

When 7 == 0, the function is comparatively simple. Its equation is

I(F—1) (sﬂz)Kw?Jgsz (9% — (n+1)2} K =0

Now consider the expression

y =1+ Cg)d—g—i——;cc) :

Since
Doy ey
we find at once that

o2
(1 + :2)% —n(n-1)y.
Consider the function y of a complex argument { = « -- ¢, and let

y::A—-f—«LB
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 315

where A and B are real. In other words

01 e%] =

We find, if an accent denotes differentiation to «,
(e +2:0) (A” +1B") = n(n 1) A+ B)

nA”" —n(n 1) A = 22B"
B —n (n+41)B = — 22zA"

or

which are equivalent to

(s—_n)(s+n+1)A=§3(s_'1)B
(S—n)(3+n+1)B=~2S(S—-1)A

and eliminating B at once, we obtain the differential equation for A. The same equation
i3 satisfied by B, and it is in fact clear that the general solution of this equation of the
fourth order is -

Kl =y=[x(1+2)q @) +e0+)p (C)]-m
"lf' [3/ (] + Cz) Qn, (c) + 3 (] '—l— Z:2) .pn’ (z)] {ma--te 0 (12)

The four fundamental solutions are in fact the real and imaginary parts of

(1 —l_ 2;2) [pn’ (Z-')’ (Qn' (C)J

when § = 1. They thus have a relation to the spheroidal harmonics analogous
to that between KBLVIN’S ber and bes functions and the Bessel functions.
To obtain K, (x) directly, with this information, we have

K,’(z) = L e (2 )0?\ <ﬁ> sin A.

[0t = /2 (0

whether = be entirely real or not. Thus, writing « -« for , we find by the usual
inversion of order of integration, clearly admissible, that

Jo A0 e [ e~*rdx~v2 RACEDL

— 2 14-1¢
- rnin |1 )q (%)

Now
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316 DR. J. W. NICHOLSON ON THE
where = x 4. Similarly, if {’ =2 —:, we obtain a similar expression, and by
subtraction,
e 8in 2 v, /2 8)e () = (L +87)g,/ (8]
joe J,.+«}(7\) —dh =} /\/-,t{ n(n+1) {

This can be transformed by use of the recurrence formulee

(] —I‘“ Cg) Qn, = (7& + l) (Q”n-fl + zqn)
0= (/n' + 1) gn+1 - (27’?, "l'" 1) 2;911 - n,(ln-l
into the final result

K0 (2) = K¢* (2) = ““@;H—]) {1 (B +1) + Guaa (@ +1)

— Qua (@ — 1) — Guea (. — 1)} (183)
The transformation formula for ¢,(¢') can now be exhibited entirely in P and g
functions.
§ 5. Further Examination of K, ()

This more general function cannot be dealt with so simply. From its importance in
problems of the present nature, however, it is worthy of a detailed study which cannot
be given in this memoir. We shall merely indicate other interesting properties of
considerable use.

In the first place, it admits a useful recurrence formula, which can serve in problems
for which not an exact solution, but only an approximate one, is needed.

Slightly generalising the function, as is necessary later, into

. R o dA
R (@) = | 6™ Ty (1) 01 (02) &
where @ is a new parameter, we have

K. (1) = — [ e T (G2 (o, (ra))

Jo

(by the recurrence formula for Bessel functions)

=— [ e T BT, 0) + 2EELT e}

2a

But
2J/1‘+§ == Jr—% -— Jr+33

El

so that we may write

K

rel

— 3 (K= Ko) + CER K)o

or

K, +K,_ 2¢+le,.”(w)dx,. A P
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and calculation from the first two functions K, K_* (whose value is obtained at
once) is very rapid. K_* is the conjugate complex to K "

One further integral expression of a very different type must be indicated.

We have, if c/a = =,

(o ut = /20— u) (1 2 008 9 @ = 7P (W) 1,12,
and, therefore,

[ (ot 0 — /(1 3 (1 - €2) cos 8} dp

0

% (=) @r -+ 1) P, () p (€) K7 ().

This is a very convergent series if x is greater than |{|, and remains true if ¢ is
wholly imaginary. Thus

[[anf it — 1/ 11— 02) (1 — ) cos 9} dp

and in particular, with p =1

f qﬂ(w—k ) dp = g, (@ -+ 13)

=TS () @ DR O K (o)

Thus, K," (z) arises in the expression of ¢, (x -- 1) in a series of Legendre coefficients.
In fact

This expression is not obviously symmetrical in 7 and n, but can readily be proved
to be so. For whether z be real or not,

Qn (.7)) = %ji]ljé?ﬂdy, In (37) = 1L_("+1)j P ( )dy

1 LLU-—y

—the principal value being taken in the first if z is a real number between 4 1. Thus

—r—n—1

K (@) =- 2r j (8)d C‘ 1L(;+(3L/é;li
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and inverting the order,

o TR 10 1 T(C) dg
T jﬁan(y)dyl(- L ty) €

1 —
= -} LZT—I;L IJ Pn (?/) Qr L" ('1’ - ) (’ly’

o L [ b ) g by,

0

The power of v is — n, and therefore the integral is symmetrical, and we find

K, (2) = 17; [11(_,,,(%-|~ )P, (2) dt

v -

L-—-)l

S g0l o (19)

™ J -1

both expressions being real. The general equation of transformation to new spheroidal
co-ordinates can therefore be written

P (o) (@) = () ECr@ R e ] B ' )i

P, (1) g, (C‘_; + nz\) di  (16)

ob/s

5 (2 D) P ) g, (9) |

in a form containing only P and ¢ functions.

§6. Two Equal and Equally Charged Coazial Spheroids.

Let O; and O, be the centres of two equal, non-intersecting coaxial oblate spheroids,
their axes of revolution being along 2z, O, at the origin z =0, and O, at z = - ¢, s0
that ¢ is the distance between centres. Let ¢, be the parameter of the spheroid round
0,, related to the harmonics at O,, and ¢, the similar parameter for the spheroid
round O,. Since they are equal spheroids, ¢, = ¢’ numerically. The line constant of
harmonics is a. When c¢/a is large, the system is effectively equivalent to two non-
influencing spheroids. A single charged spheroid at the origin (O,) gives a potential
proportional to ¢, ({) at external points, so that the first approximation to the tota]
external potential of the two spheroids, when equally charged, is

V= ¢ (%) + ¢ (¢)

(the actual charge being omitted for convenience).
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 319

The general exact expression must be of the type

V=000 + 0 @) + £ 0P @)+ (R W) n @) 0

where @, is a function of ¢, by reason of symmetry. The potential must be constant over
both spheroids, and already has the requisite behaviour at infinity. The factor (—)"
compensates for the fact that the similarly charged contiguous surfaces of the spheroids
are not in corresponding positions with respect to the origin. A harmonic series given
by one spheroid corresponds to a series for the other with P, (x) replaced, not by P, ("),
but by P, (—u’) or (—)* P, (v'). The expression above is appropriate for the region
outside, on the positive side of the z-axis. By the obvious symmetry, it is sufficient to
make the above form of V constant on the spheroid of centre O,, the origin.
By the transformation formula for P, (') ¢, (¢'), we have

V=¢,(%)+

o M8

Sy @+ DR @ OK (2 + $aP @) 0)

+ T8 S (—yra, @+ 1)P ()pr(C)K ()

211 17=0

and this is constant when { = ¢, provided that, for all values of #, except zeto,
2 )
20, (5 + (=Y @+ D @) K2(E) + (r @+ 05,80 Ean (-1 K(E) =0,

or, introducing a coefficient «,, equal to unity,

aO:'—I

T & CwalC
P (Co)2r -+ 1 5,5 () ek, (5> R €2

and the problem is reduced to a determination of the coefficients a, satisfying the infinity
of equations thus involved. But K is symmetrical in » and », and, moreover,
K,"(c/a) is of order (a/c)**"+! when c/a is large, in which case the values of a, rapidly
decrease as r increases, and can be evaluated readily by successive approximations.
For our purposes, however, they are not very interesting in the case of sphereids, and we
shall confine further developments to the case of two equal parallel charged cwoular
discs, corresponding to ¢, = 0.

§7. Case of Two Charged Circular Discs.
When the spheroids become discs, and ¢, = 0, we have p, (¢,) = 0if 7 is odd. Thus

—a=(—y @) FEC S0 (—r (g =

VOL, CCXXIV.—A, 2X
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320 DR. J. W. NICHOLSON ON THE

if 7 is odd. Moreover,
...m (O /qum« = 2/7':

and we are only concerned with the coefficients a,,, satisfying

a/2m - (47)% + ) 2 a27lI{27)L <a\)) a’() == 1' . . . V' (19) (A)

n=0

The potentials of the two discs are

(Vuv ( )g, S=0

and at any external point
V= 08+ 00 (€) 2ty U (€) P )+ 0 () Pan @)1+ (20)

We may describe (A) as the fundamental equation of the problem. By analysis
of some elegance, we shall replace it by an integral equation. This analysis brings out,
in a striking way, the essential relation between the Bessel-Fourier type and the
harmonic type of analysis of such problems, which has not hitherto been perceived in
the absence of the formula (B) below, which is of a very essential character.

§ 8. Derwation of an Integral Equation.

We proved in a preceding section that for the origin O, (2 = — ¢)

" ¢ 4 ‘: { —_\n ZC_ n+§ (D) a
P @) g () = () /5. )
where D == a9/d¢, and in cylindrical co-ordinates, P is any point (2, p),

0P = (& -+ o -+ ¢,

Now
el
and therefore
- Pl a®) = <’"‘“\) 8 j e+ J (30) di,
or )
Immﬁwwﬁgfiwww<)%gw§%. . (21) (B)
In particular, with ¢ =0,

/.

Py ) 4u(0) = (52 || ¢ 83(00) dusy () w/l.

The more special cases p. = 0, { == 0 give two of SCHAFHEITLIN'S formulee.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 321
Accordingly, the potential of the region outside the discs is

"7 - :2 a’zm{q2m( 2m( ) + Q"m( ) 2m (u'l)}

W :
= <n§q> jo e—)\z(]‘ + e——/\c) JO(ZP){% E0 al?'n‘}-2m+‘é‘(la) ot (22)

where, except when m == 0, in which case a, = 1,

Ay, == — (47}’& + 1) ‘% a2nK2m2n (%/)7 . . . . . : * (23)
n=0 \

or

T L de
a2m - (4m + 1) % a2n S‘O e_CZ/ﬂJ%H-% (m) J2n+§: (CIJ) ?U—‘

(recalling the value of K,,™ as a definite integral). Thus,

Qg == (4’”’& + 1)j € cﬁaJ)m+% (x)%{ § aﬁnJ?fH‘ (m)}

n=0

Now write, for brevity,

J (@)

lH

}0-‘ Jzn»i—é—(w)a

so that, if f(x) is found, the ultimate value of V is

/ra\} [
V — ’EEH e~ (1 - ¢7) J, () [ (a) (24)
2 0 V A’
and also
_ : ” —czla dw
Aoy = — (4’m _[‘~ 1) 0 e J297z+%(m)f(x) E
where m can take all integef values 1, 2, 3, . . . to infinity, and @, = 1.

Now let y be any new variable independent of z, and multiply both sides of the
equation by J,,.. (y), afterwards summing for all values of m.

We thus find
?amJ mad () = — jo e“"l‘"ff(w)(—i“:c. S@) . . . . . . (25

where
( ) % 4:7’)’1/ + 1) J2m+% ($) J2m+’} (y)‘
The left-hand side is equal to
J @) —ady(y) =1 (y) —
and, finally, f (z) satisfies the equation

Sy —Jdi(y) = fe"”/ﬁ'f( )d_asz(4m+ D) Joniy @) Jonss ). . . (26)

2x2
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This is a homogeneous integral equation for the determination of f (). In order to
perform the summation involved in the integrand, we have recourse to a theorem of
GEGENBAUER,* of which a special case is the expansion

Iy (@ -+ y) (@ - y) = (= [2y)t 2 ( )'@s + 1) Iy @) Jois (),

or

«wmwamﬂmauwz%?wfﬂﬁgm L (26n)

o M8

Either of the variables may be negative, so that if z = ¥,

S DI @l =240 mEa—y @)
whence, by addition, _
S (96) ?“ (4:7% L' ) J2m+} (%‘) J2m+=§ (?/)
) sinwty)  sn@—y)) |
‘TC { p + " —1— z—y J e e e (28)

Thus our integral equation takes the form

L YT de (sin (x+y)  sin(z—y)|
R K e e

Certain of the processes involved in this reduction would need, for completeness, a
somewhat long discussion of convergence, which would take us far from the main
theme of this memoir. Such details may, however, be left to the reader, it being
sufficient to say that such justification is possible.

The reduction of a problem to the solution of an integral equation is always a matter
of much interest, for the integral equation involves all the mathematical properties of
the function needed for the exact solution, and reduces the various physical definitions
of the function to one single equation. It can, in this sense, for many purposes, play
the part of an exact solution.

Certain integral equations with the kernel

sin (# +y)/(z +¥)

have been discussed by HArDY, but the exponential factor entirely alters the type,
and his results cannot be applied to this problem.

We notice that when ¢- «, so that only the disc of centre O, remains, the
expressions on the two sides Vamsh together if

fy =@

* Math, Ann., II, 1871 ; Warson, ¢ Theory of Bessel Functions,” p. 525.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 323

Then
. 3
Jlad) = <%> sin a2

T
and the potential is

¢ in 2a di
V= | ey (1) 20

which is the appropriate form for a-freely charged disc.

- §9. Approzimate Solutions.

A short account of the use of the equation in developing a solution by successive
approximation is desirable at this point, as certain general properties of the exact
solution appear at the same time.

The value of the integral

[ pom [sin(@+y) | sin(@—y)| 4
I je rre I pa—y Jdoc

0

is readily found. Writing

I::,[ e"‘xdwjldoc {cos o (x +y) +cosa(z—y)}
0 0
we may invert the order, if % is not zero, and find

1 {ve]
I= j. 2 cos ay do j e~ cos ax dx
0 0

1 cos a
== 2]0 jo 'zz—_l—_—?o{a d(x.

The integral is of order %2 in & (or c¢/a), and it is possible to differentiate
continually with respect to k. 1f D = 0/ok,

DI = ( —_ )n L rle—kr {Slnw(i—; ?/) + Slnm(ﬁ; y)}dx

1
o Ty | COS oy da
2 ( )Dl"jf‘“’y‘“kuraf

We shall now suppose that f(x)/,/2 admits an absolutely convergent expansion of
the form

S@) S on |
W_-%bnw O ¢ (1))
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—a supposition justified by inspection of the form finally obtained—for finite values
of z, and find

" et f () 02 [sin@ 4 y) | sin@ =] & yup
[ f()\/w{ T } =S (rant

=2

> M8

n n d
(=)D | e,

The integral equation then becomes

Iy _ /2 Siny 2%y g | CO8 ey da
VY vV y 71:201( )-ankL ka2’
or, for all values of ¥,
© . ( ) ___—Qw, ___n n 1 d“ < ___'Oi?iz. \
%bn?j «/n%:2n+l| T o( )ankjokz—}—ocz 1 2 )

It is at once evident that only even powers of y can occur in the series

f@) =vyZby . . . .. (3

and therefore f (x)]\/x s an even function of x.
This was also clear from its original definition, but requires some emphasis later.
For such even powers, we have, including the case m = 0, '

—____\7 ,,2__ ] (—_‘) = 2n t @2’”da
bam = (=) /\/71:'(2?%—{*1)! QWZ'nz‘ban k.[okz—i‘of.”’

where

J @) e = E by,

The coefficients b,, can be determined rapidly, by this formula, to any desired order
of afe or 7. For it k>1,

2 [P _ 2n! 1 (@nf-2)! 1
Dk.{om”—i—kzdah‘Qm—}—lkﬂ"“ 2!(2m+3)k2“+3+'"'

Thus,

(—)m 2_(=)"23%, { onl 1 _}

b, — 2= \T/
" @2m41)! x 2mlmo "|2m -1 ket

and we see that, to the third order in 4™ or a/e, for example,

2 _2b(, 1\, 4b
b= A2 =Dt — )+ 2
20,

- 3——“7.:]63. .
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 325

In general, even to the order £72 inclusive, we may prove

=g VA )

which shows the rapid convergence of the series. Thus, for discs at all far apart, a
very good value of f(a1) and thence of V is readily obtained for practical purposes, but
we do not wish to develop it further from this point of view.

§ 10. Potential in Series of Spherical Harmonics.
If f(a2) has been found in the form

flad) = /() &
we can readily pass to a development.of V in spherical, instead of spheroidal, harmonics.
For ‘
_ ma re
V= A/ ()] et e a0 0y 2

2 v A \Y m
—a A/ 2 JO e (1 ) 3, (36) d2 £ by, (a2

—an/% £ by, (D) [ fe b e} 3, (o) da,

N (7 RN ¢ . )

o M3

where D = 3/dz, and at any point P, if », R are the distances O,P, O,P

— Ew 2m !—_ _}_
V—‘“ /\/2 %:me(aD)z {7,+R}'

3

But
o 1 w !
é‘zz . ;;': (“) WPn (M)>
and therefore
] ) s 0/
V=oua /\/ },, 2m ! | b aSm{PZu;gﬁfls >,,[~ PZm (COS )1 L (34)

Rzm-}.l I

where (0, 0”) are the inclinations of O,P, O,P to the z-axis.
- This form of solution, thus deducible at once from the integral equation, is eSpeoiaHy
useful in giving the distant field due to the two discs.

The total charge on each disc is evidently Q = ab, ,/(=/2), and the exact value of
b, is given later. The approximate value is

Q=an/F b=aa/7. 4/2/'*??79“1

::a(l—z('p)_-. e e e e e e e e (35)

\ e

to order (u/c)? inclusive, where a is the radius of a disc, and ¢ the distance apart.
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Parr II.—PruLiMinary Stupy oF A Typre or INTEGrAL HqQuaTION.
§ 11. 4 Property of a Certavn Symmetrical Function.

The kernel of the integral equation, which we shall denote by

K (2, y):sinw(i ;/ Y) _l_sinw(ai;y) (0

possesses the remarkable property

0

goK(m,y)Km(y,t)dy::nK(x,t). e

For consider the integral

Tsin (@ 4-y) sin (y|-1)
L Jo -ty T oyt @y
Then by obvious steps,

. R R 1 1 . L
11:15——-90& <y+a;*y+t>sm (y -+ ) sin (y - 1) dy

— t___i_mj W sin 7 sin (21— ) “t_l_xL c-l;-sin 2 sin (A — ¢ + @),

changing the variable differently in the two portions. Again, changing the signs of
x and ¢,

- r sin (y —w) sin (y —1) 4

0 ?/_ﬂ'/' ) y""t y
= 1_ t.[~$%&8in (A —1t =) "_ﬁjnt%sin Asin (A -t — ),

and by a simple reduction, we find

I+ 1, :;%jo EZ} sin A {sind -+ ¢ —a) —sin (A — ¢+ )}
—_4 j dlsin (t —x) sin 1 cos 4
t—xJo
2 sin(t—-x)j @sin%:nm—n(—t:@.
l—x o A l—x

The value of

Lr _["fsin () sin(y—1) , sin (y--1) sin (z—y)
I‘"’JFI‘*HL{ r-ty T y—t K y+Ht 1 x—y }dy

may be deduced by changing the sign either of = or of ¢,
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Thus the whole value of the integral

[[K@nK@ow
0

18

L T L= (R0 e b (o,

as stated.

§ 12. Homogeneous Equations with K (z, y) as Kernel.

Consider a homogeneous integral equation

D

bo)=1] K@mpé@ds . . . . ... . G

with K (z, %) as its kernel, and 4 being constant. Without recourse to very general
theorems,* we can at once determine under what circumstances it has solutions. For
if ¢ is any solution, we have, multiplying each side by K (y, ) and integrating from
Yy=0"%ty= oo, ‘

[tOR@Hdy =1 s@d| K@ K0,
—assuming the inversion of order, which limits the types of solution concerned, but
not in a manner relevant to our purpose.

Thus
_}¢ (t) = m jo ¢ (@) K (z, ) dt == (1)

or i=1Jr, the only alternative being ¢ (/) = 0. Thus the only non-zero solutions
occur when 1 = 1/=. For our study, the significance of the result lies in the fact that
the homogeneous equation has no solution when i = — 1/, which is the value in the
electrical problem. _

When 2 =1/ an infinite number of solutions exist, of very diverse types, some of
which may be indicated. For example, a formula of Sonin® is

2 (“ in (z 7
Tl =2 j J(#) %%’]—7“) du
which is equivalent to
J, (k) = -I-L J, () K (&, ) de

K
so that J, (y) is a solution of the homogeneous equation with 4 = 1/.

* Vide, e.g., WHITTARER and Wartson, * Modern Analysis,” Camb. Univ. Press,
VOL. COXXIV.—A, 2 Y
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There are important “ orthogonal functions” connected with the equation. For
example, it is satisfied by

$y) = Wy

J, Ko 3@ =1 A/2] KoK 0de

_ «/g Ky, 0) ==, )/ y

for

and we may enquire under what circumstances the function

¢ () = duey Ny

is a solution. Consider the integral

= me,yuw(:c) N

Then expanding the kernel,

VY B
= -\2/1;;% (47’ + 1) J2r+$ (CL') Ir

[= L g‘m_ . Jn+& ( ) do % (4 1) J‘2r+% (w) J2r+§ (3/)

where
clx

x

L= [ 003 2) Jos () &

Now by a very general formula of ScrarHEITLIN, when all numbers are real, and

6 <0, vlplto>-—1,

3,03, (o) a7 — 2T (o) {3 {1 vboto))
jo Jv('l/) JP (x)w du(/‘“— I‘{%(l ":1“’,,“‘9_‘5)} r {%(1+P“‘J“*‘G)} T {%‘(1*5-‘)»%9—-——6)}.
In our special case o = — 1, and on reduction
[ 1, singw(n—2r)
"n (n—2r)(n-2r 1)
Thus
2 3 49 - 1 or)
= = Tl Tywi () sin (n — "3

If % is even, all the terms of this series vanish except that for which 7 = 2n, and its
value is @d 5 () V7.
Accordingly,

[T @ LR ) = T T l) - e @)
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and if » is an integer, J,,,: (4)//y is a solution of the integral equation. On the other
hand, if 2» is replaced by an odd integer, it is not a solution.
Moreover, since by the above equations, if n # 7,

j () J.2r+&(y)@ =0,
0 Y

it follows that {Jy,.s (4), Jarss ()} /2y are orthogonal functions.:
A consequence of the above analysis is that any function—which must be even—
capable of expansion in a convergent Neumann series of the form

f(fl))——-—}aan mn@V .. L. L (40)

is a solution of the integral homogeneous equation with 4 == 1/m.
Characteristic examples are J,,(z), cos Az, *", where m is an integer.

§13. The Integral Equation of the Electrical Problem.

The integral equation

L@ Iy _ -
D) = jf(x K@y . . . . . . (41)
where 7 == c/a, arising in the electrical problem, may be written
_ Ly 1( - ’
¢ (y) Ju cho <f>(w)_e R (x, y)de. . . ‘. .. (42)

where ¢ (y) = f(y)/+/y. We could choose a new kernel e="“*+? K (z, ), but this would
make the form less advantageous, as an attempt to solve the equation in this manner
has shown. We accordingly retain K (z,y) as kernel.

Now ¢ (y) is, by the definition originally of f(y), expansible in the form

zan'].29z+%( )/\/?/,

as also is J,(y)/v/y. Thus by the preceding section, ¢ (4)—J,(y)/+/y is a solution of
the homogeneous integral equation with 4 = - 1/. Acoordmgly,

?/)/x/y—wf {¢ (@) = 3y (@) 2} K (@, y)d

By subtraction from (42) we find

[, #@ =L@ /et s@em Ken=0 . . . . . @)
or
B (Lo = 3@/t b @)
2y 2
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where ¢ (z) is any solution of

f¢memm:a 4

A knowledge of the appropriate ¢ (x) would give a complete solution of the problem.

§14. The Equation.
jw@Kmmmza
0

We must now consider the types of solution which this equation yields, noticing,
in the first place, that since ¢ (z) is an even function of z, as already shown,
¢ (#) {1 + e ™} is a mixed function (neither odd nor even). J,(x)/\/= is even, and
therefore ¢ (x) is mixed, or has both odd and even terms.

The equation has an infinite number of types of solution. None can be even functions
of x expressible as a Neumann series, for all such functions, as we have seen, satisfy
the homogeneous equation.

Whether ¢ (z) be odd or even, the integral is necessarily an even function of g, for
it is unchanged when the sign of ¢ is changed. In fact, for any ¢ («) the integral

V()= 4@ K@y ds

is necessarily even in .

Any number of solutions can be found as follows, involving both odd and even
functions of y :—

Let Fy () be any odd function of z giving a finite integral

Guy) = ¥i(0) K (o, 9)

where G is even in y—and therefore over a wide range of forms of (; expressible as
a Neumann series—and a solution of the homogeneous equation

Gy (y) = %L G, (v) K (z, y) de.
Then by subtraction,
.(0 {Fl (@) ~.7T1c Gy (m)} K (=, 9’) dx = 0,

and T, — (/= is a solution of the present equation.
Thus, if F; covers a wide range of types of odd function, a mixed solution is given by

E@ple@Kmm@”.... T
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One or two illustrative cases may be quoted, all of which can be verified otherwise.
It is useful to notice that

1
K(z, y) = zj COS o cOS ayf do,
0
so that, when inversion is justified, as in the examples,

rf(a;) K (2, ) do = 2 [ cos ay s rf(ac) cos uz da.
0 ) 0 0
Thus the relation

F(y) = | f@ K (9o

is equivalent to

[e]

F(y):lecOSocydo:J f(x)cosoxdr . . . . . . . (46)

0

showing an obvious relation to FoURIER’S integral theorem.
Any solution of the equation, with « 3 1

o0

J ¥ (x) cos ax dx == 0,
0
is, ipso faclo, a solution of

(: Y (#) K(z, 4) do = 0.
For example, if @ > «, and Y, is the second Bessel function
j: Y, (ax) cos ax dx = 0,
and therefore, when « is greater than unity
j: Y, (o) K (z, %) dz = 0,
and more generally, if @ > 1, and F is arbitrary,
j: e K (2, 1) r Y, (t2) F () dit = 0,

giving a variety of logarithmic types of solution.
Proceeding to simpler illustrations, take the odd function J, (az). We know that

(a>a)

<1 —:‘/—(&2-0‘:32_» (@ < o).

L Ji(ax) K (2, y)doe = 2 réos ayf do r J1(az) cos ax de.
0 0

00
J J1(az) cos ax dr =
0

Therefore
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If @>1, then @ >« over the whole range of «, and the last double integral becomes

1 .
2[ cos ocg/dm,_l. __2sin Y
0

a  ay

But if «>>1, it becomes

2 [« 2 N, 2 .sin y 2 ‘o cos ayda
L2 5 — Y. = | %008y dox
CL[Ocos oty dot - j cos M/<x/ e @2)) o a,ja\/(m?—a?)’

the two results being continuous when @ = 1. In particular, if ¢ and b both exceed
unity,

f {aJ(ax) — b, (bx)} K (z, y) de = 0,

and aJ, (ax) — bJ, (bx) is a solution of our equation. This example is included because
it shows that purely odd solutions are possible. The result remains true if ¢ or b becomes
equal to unity. Proceeding to the limit @ = b, where b <« 1, we find that xJ,(bz) is
a solution, and from this we can derive an infinite number of purely odd solutions.
For any function capable of an expansion

f@) =% a,J,(n2)

0

j:wf(m)K(x, y) de = 0.

More generally, with certain limitations, if F(1) is arbitrary, and b < 1, the integral

must satisfy

z j 3, 0a) F (2) da

is a solution. Evidently the number of purely odd solutions is infinite.

The purely even solutions, which also exist, are important in that they are only
possible for functions which do not possess a convergent development in a Neumann
series. Any such function possessing this development must, as we have seen, satisfy
the homogeneous equation

¢(y)=-1~f:¢(w)K(m,@/)dx

™

but we have no general result for this integral if ¢ (z) has not the property, and the
integral may be zero. One instance will suffice. Consider the function

F(y)=J‘ msmqucosxK(% y) dz

0 a? —|~ q°

when ¢ is not zero. It is equivalent to

F(y) _QJ coswqdocj xsmx::gcos:v cos ox dx
— fesin («+1)z-Fesin(14a)x qcos(a+«1)x+qcos(l~oc)oo}
- LCOS ayd“j dwl @+ ¢ a® ¢
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which, quoting the well-known forms
© cos rx T ? @ sin v T
st g, w2 T
jo s 2q Y 2
is at once seen to be zero. Thus, a purely even solution is

(zsinx — q cos x)[(x? -+ ¢?)

when ¢ is not zero. If ¢ is zero, it suddenly satisfies the homogeneous equation
instead.

Mixed solutions occur in cases for which the individual odd and even parts are not
solutions. One is evident already in the form, from analysis of this section,

r {Si]; Y tand, (aw)} K (z,y) de =0
0

when ¢ is not less than unity. The first portion here satisfies the homogeneous
equation.

The general formula for a mixed solution has already been mentioned in this section,
and is

¥ (y) —~71; j: F(z) K (z, y) dw

where I (y) 1s an arbitrarily chosen odd function, such that the integral is finite—and
also necessarily even. We can clearly modify this by the removal of the restriction
that F (x) itself should be odd. '
The most important example, to which attention will now be restricted with a view
to future use, is
F(z) =e™,

where 1 1s any constant. With this value,

A0

j ¥ (2) K (%, y) dw = 2 Jq do cos ay r e cos ax dw
0 0 0

:2J1nd“ COS oy
o Aot

and, therefore, for every positive value of 1,

w2 (*ndecos ax) N
50 {e EL———W_MZ jK(w,y)dw—«O. S - 8

The bracket vanishes when # = o0 and when » = . We may multiply by any


http://rsta.royalsocietypublishing.org/

A
A

A
|

/\
A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

334 DR. J. W. NICHOLSON ON THE

function ¢ () of  which makes the bracket integrable from # = 0 ton = «, with a
reversal of the order. For example, if ¢ () = sin ¢z, where ¢ is not zero,

0= j: K (z, y)dx r dy {6‘”” sin qn — gjl 7 8in g1 cos ax d“}

0 - TJo 7]2—[“0(2
— ° j_ q _gj*l - wqu}
J.OK(Q% y)d(l? lqz_'_xz - OCOS ch(lo(,é@
g wainwﬁ(]COSx_‘ ) .
‘ JU x? - (12 K (”C7 y) du,

which verifies our previous purely even solution.

More generally, if, in seeking a mixed solution, we choose our initial function as
e™™ f(x), where f(») is even—not necessarily, but for analytical convenience—we
have

S N e

[Ce f(m)K(x,y)dx_f<é—£>joe K (2, ) da
[0\ [*2n cos ay da
—~f<§;]>j0 n? - a?

¢(x):f(x)e~nz~%f%2nrcos“””d“ C . (48)

o 172_}_0(2 g

and the function

satisfies the equation
j ¢ (z) K (z, y)dow = 0.
0

This is an important fundamental formula.
Now

o\ 29 2 .92n! , ey
<8_71> 7?2 4 o2 = (n? + mz)u+g cos (2n -+ 1) tan 1% ,
and if

f(z) = 3 gare
0

we find; for all values of the coefficients @, for which convergence is secured, that the
function

§ (@) = X aa@re — gj
0

1 . w7 { . . L
cos ax do X 201G g (2n 4+ 1) tan* % . (49)
T

0 o (i - a?)r
is a solution of the equation

[ Y@ K@ pdo=o.

Tt is again to be emphasised that the “ mixed ” character of the function, together
with the presence of the factor e=, determines its importance.

Our digression into a general survey of a new type of integral equation has been made
as brief as possible, with the limited scope of determining the features which bear
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on its application to our cardinal problem. - In a strict mathematical sense, therefore,
it is somewhab special, though the type of equation is worthy of more extended study.
The factor e~* precludes any correspondence with Harpy’s discussion of integral
equations of a more formal type with a kernel which is essentially K (z, ¥).

§15. The Cardinal Equation.

We now proceed to indicate the method by which a solution of the original integral
equation, suitable for our purpose, was ultimately found. In the original equation

#iy) ~ ZONT= =1 @K (o, 5) do
where

=f@/z,  n=20=da,

the latter substitution being very convenient, we write

¢ (x) __4(2) Q(Jf

2 cosh qx

so that Q (), like ¢ (x), is an even function. Using the fact that ¢ ( W/ y
satisfies the homogeneous equation with coeflicient =1, we obtain

[ e85+ sl e

n/ 2coshqe /= 2 cosh gz qac

which reduces at once to
'j”(Q(x)e-ax—%i”)K(x,y)dx:o. L (50)
0

This equation arises in any attempt to find a suitable solution, and we shall call it the
cardinal equation. It is required to find an even solution Q (x), not necessarily—mnor
in fact—expressible as a convergent series of power of z. The equation admits, indeed,
an infinite number of purely odd, purely even, or mixed solutions, and must be com-
bined with other conditions involved in the problem to obtain a unique suitable one—
and especially combined with the original equation, which is more general.

§ 16. Solution of the Cardinal Equation into an Lizpansion Theorem.

The following solution is obtained by a symbolical method, which leaves something
to be desired from the point of view of rigour. But there is no actual doubt regarding
the final result. The direct form of the integral equation for Q(z), which does not use
the fact that ¢ (z) satisfies the homogeneous equation, is

Qly) _sinyg 2" e ' :
2coshqy y L 2 cosh (@) K () da.

VOL. COXXIV.—A. 2 %
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Recalling that
= lj sin @ K (z, ) d»

Tt
we find

Zg)s(g)qy — nj (Q()(Jw s1nx> (a, 1) da

and using the cardinal equation of the last section,

g2l Qe (1 K (5,

2 cosh qy 2 cosh gz K
or, briefly,
I© Q@) — e Q)
.0 cosh gz K@ y)de == S cosh qi/”

indicating that Q (z)/cosh qx satisfies the homooeneous equation in its only soluble
case. 'This is, in fact, only a verification, but it is useful as the condition to be super-
posed on the solution of the cardinal equation. We write accordingly, as before,

,\/2 == 2 cosh qa;Z oy (2)]/ 2 = 2 cosh gz (z),

¢ = /\/g Q (2)/2 cosh gz,
T
and the cardinal equation gives

2 . de 2 (“sinx
Q%a,,,f cosh qreJ,, ., () K (2, ) —— Ta «/J—E jo — K (=, y)dx.

Replacing K (z, y) by its equivalent,
© [ o de [* /2 sin
2 % anL cosh gre™ Jo,. s (x)% jo COS ol COS ax do == M [ cos ayda J —— oS p dz,

or, removing the «-integration,

AT y )
2, - - du 2 (% sma ' 7
22 wnj cosh qee ¥J,, ., (1) —~cos ax = M— Y os am d = T ;1Y
0 \/.L‘ Ty W 2

0

where « can range from zero to unity. This is clearly, from the removal of the integra-
tion to «, not general, but if it leads to a solution of the required form, this can be the
only physical solution. Briefly

A0 N n .
Qjocoshqxeq¢()008axdx—/\/§ Ce e e e (5?)

subject to somewhat stringent conditions. ¢ (x) must be an even function, and « must
be between zero and unity, while ¢ (z) must be independent of «.
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Even under these conditions, the equation has a variety of solutions. But the form
of ¢ (x) we need for the problem of electrostatics possesses also the property of tending,

when ¢ tends to o, to /\/ 2 Slrxl—ﬂf, for this is the case in which ¢la - o, or only
T

one electrified disc remains, for which the solution is known. Thus a necessary form of
b is .
\/2 “m"”!l f1 1~f2(“ 1 } N 1)

where all the f’s are even functions independent of ¢, and also, of course, of o.
Now, if D is the operator 8/d«, we may write
" dx

) dx —qz 8
2 50.3 a, L cosh qre™* J,,,.() cos w:/—cr =cos gD 5 anL e " Jopy 4 () COS w_ﬁ ,

and our equation becomes

an

ral
2% a,n[ e o, (®) C
0 JOo

VQ sec q])j sin 2 cos oL g

2 j sin z cos 2% ~
- ’\/ o % cosh gz doc, (54)

the use of such operations being known to be legitimate for integrals of the type on the
right. This integral can be evaluated, and the main difficulty at this point is the per-
sistent factor e~ on the left, which is not an even function. If it were, a solution could
be written down by inspection. In actual fact, a somewhat long investigation is neces-
sary in order to get rid of this exponential, for, in the only mode of solution we have
found, the value of the integral on the left is indicated explicitly.

One of our earlier formule was

? 2
L e~ J2n+§(x) “?/% = /\/7_7: 9271(9)

in the present notation—the proof was valid for complex values of ¢ with a positive
real part. Accordingly,

D

QJ e~ Jg,.1() cos oc’)c—————w \/ {gon(q 4+ 12) + qou(g — )} . . (55)

——evidently in all circumstances an even function of « and an odd function of ¢, for -
an. ({I) 1S Odd in q.
The equation to be solved is now

R

%amz{(hn (q 1) + ¢2a (@ — 1) } :j
27 2

cos ax sin x
—dx
o coshgr w
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But we may write

{sinh (q +i2) 2 -} sinh (¢ — vo) '}

w e ~On .
j cos ow sin @ 5 \ sin @ dx
o coshgqr x 7 Jo xcoshqu2 sinh ¢z

so that

5 gy (g (g - 19) + o (g — )} = |

sin zdx

7 sinh 205 {sinh (¢ -} 1) 2-}-sinh (q——gx) x}. (56)

This equation is satisfied identically if, for suitable values of a variable p, whose
imaginary part does not exceed unity, and whose real part is less than 2¢, we can select
coefficients a@,, in accordance with

3 ® sin px sin
Xa :[—.———————————d.’l}.......57
o on e (¢) o sinh 2¢z  ® _ .( )
where each side is an odd function of p. The use of this apparently simple artifice
ields a definition of the coefficients which can in fact lead directly to a solution. The
Y ‘ Y .
value of the integral can be deduced from that of an integral due to Poisson, namely,

j sinh po cos krdz = = sin BE/JG()sh]f—jE -+ cos pr
) 20" 2¢/ U g q)

sinh g

where | p| <|gq|. Writing ¢ for p and 2q¢ for ¢, and integrating with respect to & from
zero to unity—this involves no delicate considerations if the preceding condition is
satisfied—we find '

j‘ sin 2 sinh px du NG r dk
@ sinh 2qx ”4 o kn '
0 1 ' -’1 =q oosh + cos 28 o’l
~ When ¢ tends to infinity, the right-hand side tends to
nPT 4
49°2¢"*

and we have

Lt % a2n(12n (P) - 7;29/]_6(12.
> 0 i

This is in violation of a fundamental property of our function ¢ where

¢ = %‘“%JZM% (x)/\/wr

for when ¢ -> o , we have a,—> 0, a@,,-—>0 (n # 0), so that the left-hand side should
tend to ¢, (o) instead of zero. The solution we thus obtain is therefore not the
solution sought, and we return to the equation

% gy, {9217, (Q .'IL "“) _{—' Gon (g - La’)}

- jo Suoloxsmh 2qx {sinh @ (g + 1) +sinh @ (g — o)} (58)

in search of alternatives.
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ELECTRIFICATION OF TWO PARALLEL CIRCULAR DISCS. 339
1t is readily seen that only one alternative is presented. If we notice that
2 — (b)) =g -, 2 —(g—w) =g
we may transform the equation into the equivalent form

%“2;7, {%n (Q + W) *]“' Qo (q - “x)}

= [: S%fsinﬁa;qu {sinh {2¢ — (¢ + 1) &} - sinh {2¢ — (¢ — ) 2} . (59)

which is satisfied identically if, for suitable values of o,

2 “sine  dz
%“’M Gon (9) = j‘ —_—

. - Sm Slnh (Qq - p) xr . . . . . (60)

At this point, if this alternative, which is unique in our method, were to fail, the
method would also fail. Its success, now to be shown, implicitly carries with it the
uniqueness of the resulting solution, which of course is necessary on physical grounds, as
the problem in this aspect presupposes no further conditions to be satisfied. The
limiting values of the coefficient a,, provide the final test for any solution.

Again quoting Po1ssoN’s integrals in different notation,

sin —2:; (29 —¢)

r sinh (29 — ) (oo gy — T
Jo sinh 2¢x

4q coshgg -+ cos 2% (29 —¢)

] ,
== ﬁsin%/Jcosllkz-—cospﬂ}
2¢/ 1 q

4q 2 2q.
we find by an easy integration with respect to %,
_ . 1 dk
sinz sinhx(2¢—p) , @ . pn
Jo © sinh 2q% do = 4q i 2¢ | cosh R os 82
‘ 0 2¢q 2q

Using a new variable ¢ = tanh Z%,
this reduces to

kx 2\ T _ e 7
tan—! (tanh = cot P——>] = cot~! <tan el / tanh — ).
[ 49  4q 4q 4q>

0

The last is a g-function, and our equation becomes

o) — o ki
Zolaznqzn(p)~qo<tan4q/ta.nh 49). B (18

When q-> o, the expression on the right becomes merely ¢,(p), and it is then
evident by inspection that the limiting value of @, is unity, and of all other coefficients
Is zero, so that this mode of solution is satisfactory.
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340 DR. J. W. NICHOLSON ON THE

The problem, in this its last stage, is thus reduced to an expansion theorem in
g-functions. Starting from a problem in these functions, our investigation, after passage
through the integral equation, has returned to these functions with a problem of a
very different though elegant type.

The procedure, according to which, by the action of a transcendental differential
operation, cosh gz was at one point removed to the other side of an equation, may be
regarded as objectionable. This difficulty can, however, be evaded by considering a
more general equation, of which the one we discuss is a limiting case, and applying a
method free from the use of differential operations. In a later investigation, described
as the Condenser problem, we have a similar investigation to perform, and have therefore
endeavoured to be brief. The following short justification of the procedure may be
given :—

Introducing a parameter p, consider the equatlon

\ dw 2 ( SIN 2 o COSh P de (62)
0

03‘ 4 /—qm k) == R A c . - -

2 % s | © Janss () T cosh px cos ax = - — " cosh g
where the case p = ¢ is that arising in our problem. If p never exceeds ¢, and if we
can solve this equation in such a manner that a,, is not a function of p, passage to the
limit p = ¢ is clearly lawful, and our previous process is justified. This can be demon-
strated readily. For the equation may be written in the form

el

¥ (on | €% Jopsy (x)% {cosh x(p 4+ v&) + cosh x(p — o)}

JO

2 ("sin 2 ; ) e oo n
M 0 — eoshg {cosh = (p - va) - cosh & (p — o)},

and if a,, 18 not a function of p, p is always added to 4 v« wherever this occurs. Write

5 a%{ =% Jy,,1 () cosh Bxfzﬁ — %/\/Qj sin z cosh pPx du
[t} O o

x cosh gz

for all values of 8 whose real part does not exceed ¢, and the modulus of whose imaginary
part does not exceed unity, and, moreover, with g,, not dependent on £ in these cir-
cumstances. Then the equation is necessarily satisfied. But this simple equation
containing 8 may be written as

A s
IVES TN 7?“- femrtos - g=rt-)

- j sin cosh Bz 4
0

z cosh qm
_ (Psinz B
- .L @ s1nh 2{]517 {Slnh 1 + B) v + sinh (q B) }
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and is true for every value of 8, with @, not dependent on g, if such coefficients «, can
be found to satisfy

% gy {0, (4 &) + (g — B)}
_ r sin @ dx
o = sinh 2qx

{sinh (g + B) & + sinh (7 — B) @} . (63)

which is our previous form with p ==, and, with no dubious intermediary stage.
It leads in the same way to coefficients a,, satisfying

44

0 o ' np . \\ )
20} Aan Q2:(p) = ¢, <tan i / tanh —4(1) O (17
and we shall regard this as established.

§17. Introduction of the Zonal Function Qu,(p).

Beyond certain expansions in Q-functions given in O.S.H.* little is known regarding
such series, and no general method is at hand. It is thus better to work with the zonal
functions Q.

Their relations to the ¢-functions may be stated as followsf :——

Firstly,

Qo (b0) = 07272Q,, (0) - . . . . . . . . (65)

where Q,, (p) is sufficiently defined, for argument greater than unity, by

@) [ e @nFDE D) )
an(p)—(47@—}~l)!{ 2(n+3) ° ] e (66)

and also by
an (9) — %Pm (P) log -

4n — 5
— Pzn~1 (P) -

1 dn—1 B >
1 1.2n 3(2n—1)

Pos(e). . (67)

in a terminating form. The transformation we need, however, is for g less than or
equal to unity, and requires some care. When |[n| < 1, Q,, (#) is usually defined by

1-4n  4n—1 o
an (/") = ; Pzn (1“) IOg 1 ”]"il - 1 2n PZn——L (,Lt) TT e e e e ((}b)
in CHRISTOFFEL’S form, and is not the analytical continuation of the previous function.
For this makes ‘

Qan (tp) = Lz"“l{p (o) tan~tp - dn 1pm_1 (¢) 1,
2n AN v 1.2n J

leading to the conclusion

Gan(0) = 2Pou00) +1Qulie) + + o o o L (69)

* Pp. 59-66.
+ The classical memoir, in different notation, is that of Hobson, ¢ Phil. Trans.,” A, vol. 187, p. 443 (1896).
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342 DR. J. W. NICHOLSON ON THE
in terms of usual definitions of P and Q when |p] < 1, and of the definition of ¢ we

adopted after Lams.*
Again, we can show in a similar manner that

() = (< (TP = Qule)) - (0
and similarly

o (=0) = (F EP @)+ Q@) . o

We have merely stated these results, which may easlly be verified by the reader.
Thus the integral of the former paper,

(- d.b /\/2
e =, o ’ == — Yan \C /5
JU 20+ «/.1/ n(l2 ((\)

leads to the conclusion that if « is real-—writing vz for ¢—

Pes) d 2
ju cos “'7”]2”4-9 \/w.,v = :]2 M% {(f‘dn (w) o (M W‘)}
2 2 ‘
= (-M) ‘;E 1)2.’71 (a‘) . . . s . . . (72)

provided that « is less than unity. This has been proved otherwise by WeBER (and
SCHAFHEITLIN), who has shown also that the integral is zero if « > 1. On the other
hand, :
o d 1

J, B0 0Ty () S = (g () g (1)

—y /\/EQM(a) S (13)

“with a Q instead of a P function. This has also been given hy WEBER, and, unlike
the other, is not restricted to the case « > 1, though our proof is only applicable
to this case. These integrals serve as verifications of the somewhat troublesome
intricacies of the relations between ¢, Q, P when ¢ < 1.

If now for small enough values of |p| it is possible to write

FE =2Ragule) L (14)

f(p) being thus an odd function, we have also

F ) = 2 Aay (=) {3 Par ) = Q)]

* < O.8.H.,” p. 5l
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where Q is the CurISTOFFEL form. If f(1p) has no real part, this involves, for e < 1,
separately

§A2n(_)n1)2,,(p):0,.'. N ¢ 553

EOAzn( "Qon (o) =1f(t0). . . . . . . . (76)

[llustrations of this double relation between P and Q series with identical coefficients
can be derived from some of the functions expanded in ¢-series in the earlier memoir,
though the functions there discussed are “ regular ” in a sense not belonging to those
with which we are now concerned. In the present problems, a function f(p), odd for-
real values, becomes mixed when tp is the variable, and the possibility of an expansion
of its odd portion in Q-functions is not evident without some demonstration, which is
given in due course for the function of our fundamental electrostatic problem. The
demonstration 1s, of course, to the effect that the odd and even portions separately
give rise to series 1) in Q’s and 2) in P’s whose coefficients differ only by a constant
numerical factor—usually /2. This is a severe restriction on the types of function f
which can satisfy the conditions of the problem, though we know, from the fact that
the electrical problems‘must have solutions, that these functions must exist.

§18. Hxpansions in Q and q Functions, Argument Less than Unity.

We have seen that a real function f(p) admitting

f( = %D‘A%,([Zn( )

must also, if positive values of ¢ are contemplated, admit also

Flie) = £ Ay () {21’2”@) )

where p < 1, and therefore if

Je)=Fi) +Fale) . . . . . . ... (1)
we have
Fi(p) =33 A () Pune) |

| ) %.'......(78)
Fy(p) = —2 Az (=) Qe (0) |

Now the principal value of the integral

! P2n (1/ )
el
VOL., COXXIV.—A. 3 A
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344 DR. J. W. NICHOLSON ON THE

is Q,, (p) when p is between +1 and the above form of Qy, (¢) is used. If Fy () is given
for this range of ¢ by

then

i A, (—Yy \"1 ;‘?,211_(_%) Cl'7/ 1 \“1 El_(y) (Zjl/.
0 J—1 P___y g P"“‘y

We do not need, for our present object, to examine the restrictions on this result.
It is sufficient to notice that, in general, the functions admitting the two concurrent
expansions are of the form

fGe) = Ty (p) 4 T, (p)
oy [P E ) dy
— T (o) — 2| e

v

and that a consequent class of functions admitting the expansion

f(p) = EOJ A‘zngzn (P)
is
1 nl

Fe) =Py ()~ [_1%(?—? N )
where I, is arbitrary.

We shall show that the function we require for electrostatics is one of this class, and
that therefore a formal solution on the present lines is possible.

For if, when # is any integral index and ¢ is arbitrary,

() =P, {4 (p)}
and if
PR

ST()

Fe) =Py (o)} 7

we have an obvious generalisation of f with the same properties. This function becomes

90, '
Feo) = 212240 ()} 0, (¥ o)},
and when || 31, must be expansible, with its odd and even parts separately in the two
series. This condition, though necessary, is not sufficient, for the coefficients must, of
course, in addition be definite and convergent.

Now the expansion we require to determine the coefficients a,, is

tan~! (tanh = [4¢/tan =p/4q) = ) Gontfon (0)s
0 .
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which transforms, for imaginary e, to

(—1<p<l)
tan~! (tanh = [4q/v tanh 7p [4q) = % UonPom (10)
= £, (T P~ Q] - - 5D

It remains to be shown that the left side is included in the above specification of type
of function. _

Since p is now real, and |p| =1, the expression on the left is not purely imaginary, for
the maximum of a hyperbolic tangent is unity. Write, where z is complex,

tanh z [4q/. tanh pn/4q = tan x = — v (&** -- 1)/(¢** 4- 1),

where z is the value of the left-hand side. Then
2 — — (tanh % o tanh ©7 o O
err = <\tanh 49”—; tanh 4q> / <tanh i tanh4q' )

and is essentially negative, and with the appropriate phase rule, we find

1 -+ tanh i% / tanh i’l

— 1 1
L= gn — 5t ].Og

1 — tanh / tanh =
4q 4q

which becomes /
_ 1. (tanh pm 4q>_ <tanh o /4(]>
= 2nP°<tanh. 7 [4q o\ Fanh nldg)’ T (82)

the function P, being, of course, unity. Our function is thus of the appropriate type, with
$(p) = tanh pn/4q/tanh f{:’,

and we have three distinct expansions involving the coefficients ¢,,, ¢ being in each case
real, namely :—

tan~t (‘l)(P) = %ﬁ:‘ Qon g2n(9) 1]
QEE) =5 (Faul) <) .o 8
=2 rabul) (<1

which have been shown to be consistent. The third is not unique, in that many series
of P functions have a constant sum. It is convenient to adhere to the second.
' 3 A2
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846 DR. J. W. NICHOLSON ON THE
§ 19. Final Solution for Two Parallel Circular Discs.

We have discussed certain integral properties of the Q functions elsewhere.* The
following results obtained in this paper may be quoted :—

_— 3 (4n -+ 3) P2n+1(/’¢)
QZ‘zn (IU’) nEO (2’]77/ — 2% — 1) (2m w_l~ 272’ %_ 2) s
I 27, 9 S - 4n 43
j (R ()P et = 2 0 (@m — 2n — 1)* (2m + 2n + 2)°
R R
dm -1 0 (2m—2n—1)"  (2m+ 2n+ 2)*
. 2 71;2 d2 .
_‘47]]/,_[_ {4 dzl gr()}zz‘zm . . N . . . . (84)

in terms of gamma functions. They have been generalised further by Warsox. In
particular,

1

j QF (u)dp =216 . . . . . . . . . . (8))
1 .

We may now exhibit the final solution of our problem in an exact form. The function

¢ (2) = f (@) /2 = Z“:m st (X)[/2

has coefficients given by
Q, (tanh 7p/4g/tanh = /4q) = > (—)" @y Qu (p) (p=<1)
0

and, accordingly, -
(" tanh zp 4-q>

(| [Q @7 o = | Qo) Q (2T g,

tanh 7, n/4g (86)

The function ¢(x)is thus now determined completely as a series of orthogonal functions.
The coefficients a,, are also, as we saw in an earlier section, those of the expansion of the
potential of two equally charged and equally parallel discs in spheroidal harmonics.

Beyond the use of approximate methods, little can be done towards simplifying the
integrals occurring in these coefficients, and such methods are not within the scope of
this memoir, which is intended only to obtain the exact solutions.

For the purpose of obtaining ¢ () itself as a definite integral, we recall the formula of
WEBER already mentioned, as

AL d
Q)= (- A/F ] smer @ 7

true for any value of p. @, when ¢ =< 1, is the conventional Q. But when p>1, it is
=21 g, (vp).  Since when p=<1,

Q, (tanh =p /[4gf/tanh = /4q) = ? (—)" @2 Q:n (p)

* ¢ Phil. Mag.,” March, 1923.
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we have the same function equal to
M 7S a j:sin of Tones (£) %
A corresponding form is required when p>1. Combining, then,
:‘:.‘. Qo Gon (rp) = tan~! (tanh n/4q/tén 1o /4q)
or its equivalent, when p>1

(=) Oun Qun (p) = tanh-! (tanh n/4g/tanh P”//:LQ)

o M8

with WEBER’s formula, we have, if p < 1

@

tanh~! (tanh = /4g/tanh pn [4¢) = 3 a1y, j sin ptd g,y (t)'it“.
0 0 N4
This and the corresponding form for ¢ > 1 are equivalent to
/\/ 7—; j sin pt¢ (t) dt = tanh~! (tanh = /4g/tanh ex/4q)
0

when p > 1, and to the Q, function of the reciprocal argument when o < 1.

These formulee can clearly be reversed by use of the Fourier double-integral theorem
directly. Taking it in the form

Y(e) = | sin etp (),

0

i ]........(87)
$(z) = 2 L Sinptq)(t)dtj 4

we have in the present case

¢ (x) = <§->% J: sin 2t dt Q, (tanh =¢/4g/tanh 7 /4q)

-+ <§) th sin 2t dt tanh™1 (tanh'n/zlq/tan_h wt/4q) (88)
giving ¢ () explicitly.
We shall not dwell further on the exact value of ¢ (z), as it is hardly capable of much
simplification.
For physical application, we are more especially concerned with the first coefficient a,
to the expansion of ¢ () in orthogonal functions. This is given by

~l

7 = a, jl_, Q% (p) dp = j_l Qo (9) Qo (tanh mo/4gftanh = [4g)do. . . (89)
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348 DR. J. W, NICHOLSON ON THE

§ 20. Surface Density on the Discs.

The potential produced by the discs at any point on the positive side of the z-axis is

V=a /\/% j: e (1 —e™)Jg(Ae) p(ad)dr. . . . . . (90)

We may recall the positions of the discs, of radius @. One has its centre at z = 0 and the
other at z = — ¢, and their planes are perpendicular to z. They are maintained at
equal potentials, and ¢ == 2¢/a. The above value of ¢ being substituted, the integral
to A can be expressed, and V obtained as a single integral. But this integral is unwieldy,
and it is better to note that the actual Bessel-Fourier solution is

V= aﬁr e (1 -+ e™) Jy (2p) dA j‘l sin Aat dtQ, (tanh wat/2cftanh wa/2c)

TJo 0

-+ r sin Aat dt tanh~! (tanh =a/2c/tanh nat/2¢). . . . (91)
1

This form alone shows that it could not have been built up by a process analogous to
that of RIEMANN, in his investigation of Nobili’s rings.

A consideration of the capacity of the discs when forming a condenser is more
appropriately taken up later.

The potential being, when z is positive,

V= V 2 j: eFQ R )b @) L (02)
and also continuous at z = 0, we have in the region between the discs
Ve=aq Mg f{e“z e T (2p) b (ad)dA . . . . . (93)
and beyond z = — ¢ in the negative direction,
= avg j: & (L4 T ()b (@h)dA . . . . . . (94)
evidently making V the same at z == — ¢ and z == 0. This is the complete specification.

The distribution of charge between the two sides of a disc is readily found. If o,
is the surface density on the outer side of either disc, it is given by

1 e
= :{: ZT; <~§—Z—)‘x=0'

Thus at a point ¢ on either dise

clsﬁvgjjﬂ(l-l—e’“)Jo(lp)cﬁ(al)dl. S (9%)
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The surface density o, on the inner sides is similarly

a [0V
-y
47\ 0% /s=—c

0=12 gfz(l T ()b (@) dA . . . . . (96)

or

An inspection of the forms of these expressions serves to show the tendency of the
charge to concentrate on the outer surfaces as ¢ tends to zero, for o, ultimately vanishes
when the discs are very close together.

Part ITT.—SvsTEMS OF MORE THAN Two Discs, or oF UNEQUAL Discs.
§21. Transformation of Harmonic Sertes for Unequal Spheroids.

In order to obtain solutions of problems involving two—or more—parallel co-axial
discs of umnequal radii, or more generally, two or more unequal spheroids with congruent
major axes, belonging to confocal systems with different line constants, it is necessary
to obtain a formula by which to transform the product P, (#') ¢, (¢') to a summation of

the form _
Z a,P, (1) pa(%)

where (¢, §), (', ¢’) are spheroidal co-ordinates with different origins (z = 0, z = — ¢)
and different radii (¢, b) of confocality. Two such transformations are, in fact, needed,
according to whether the new origin is beyond or behind the old, along the positive
direction of the z-axis. We may designate these the forward and backward transforma-
tions respectively. The results are generalisations of formule earlier in this memoir,
and their derivation will be set out somewhat briefly, for no essentially new features are
introduced.

If there are two systems of spheroidal co-ordinates (u’, ¢), (», ¢), of origins O,, O, at
the points z = — ¢, z = 0 on the axis of z, and limiting line-constants (@, b) respectively,
we have for any external point (2, o)

e/ {(l—p?) (L4 L2} = b /{1 — p*) (1 + €3},

z2=0ul =-—-c-+aul,
and thus ‘
mP, (1) 4 () = [ qu [0t — v cos p /{01 — ) (1L — €)1 d9

= Jra {8+ = =) 0 )} cos g as.
It

b b .

e = —pl—r=cos po/{(1— ) (1-F )},

then

Py (1) () = || gu S+ <) a9,

a
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Expanding ¢, as before in a series of inverse powers, we can readily, as before, obtain
the formula

, N (___)n 22n+:i'-n! o 3 Jn+é (D) ™ qu
wP, (1) ¢u (8) = e (n+3) /D LeJrc/a

where D is the operation ad/dc.

But ‘
r d$ j” add
Joetela  Joe+bpl —ccosd/{(1—pt(1—C3}
_ aa __ 7a
VAle o201 —p) (148 O4P
where O,P is the distance from P to the centre at z = —c.

By the inverse distance formula* for expansion into harmonics whose line constant
or “ radius ”’ is b, this becomes identical with

‘¢

S oy @ ) p @05

Thus if (x', ¢’) relate to a spheroidal system of constant ¢ at z = — ¢, and (4, §) to
another of constant & at z = 0, :

imm%wdzvva/%rhaméﬁ
e (D)

:vm«/g%%—ﬂw+nhm%ww7§%@).. - (L) (97)
where D = a/0/cc.

This is only a slight generalisation of our previous formula, which ensues if b = a.

In dealing with problems involving two such spheroids—or parallel discs of equal
radius—we require—even for a solution by successive approximations when c/a and c/b
are large—transformations in both directions, so as to pass from one spheroid to the other
and back again in the familiar zig-zag method of constant occurrence in the theory of
image systems. We shall only obtain the fundamental formule useful at present,
leaving others of similar type to be obtained by the reader. We shall call (I) the forward
transformation, from an origin O, to an origin O, at distance ¢ forward, along z increasing.
The backward transformation, through a distance ¢ along z decreasing, is the reverse of
(I). For its determination, we may change from (u, ¢) at the origin to (x', {') at (— ¢),
according to the equations

but = —c-+ap't/, bP(L—p?) (L ¢ =a* (1 —p®) (1417,
the constants for («, €), (¢, ¢') being b and a respectively.

#  0.8.H.,” p. 56,
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Then
ay = Jfoqn{ﬂc_-bcosm/{(l—u ) (1 €} cos 4} a4
=j:qn{ Oy — P eosg /{1 =) (L+ 2]} Jdp
where

Wt —Leosg /{1 — ) (1= L)

H

- Fulegs
4
a

This becomes readily

— 2'n ! 7+ 3 n+} —b 8/80) i d‘;b
P (k) g”(:)-(Qn—l—l) SN 1 v (—bd[dc) Ls——_c/b'

The sign of the last integral requires special care, being negative in this instance, and
not positive as would be assumed in a derivation of the backward from the forward
transformation by a mere interchange of @ and b and a change of sign of ¢. Thus

J‘” d$ r' bde
‘e—efb  lo—ctan’l —iacosd /{1 —p?) A+ U}

where, in the space between the spheroids, the magnitude au'(’ — ¢ is essentially
negative. Moreover, if « is negative,

j' ” d _ 7

00— 1P cos ¢ V(@ B?)

and thus on reduction

[ =2 =2 Crerenru na (-4
and, finally,
P, (1) g () = (—p=? 4/ 7;%: (=) @r+1) P, () p.(C) T}%(—f%—a-a%‘i /8 (—" §>

but since the negative signs may be removed readily, we have

b

Pu(p) 4.(8) =

2%<2¢+1> (@) 222 o(2) - ) (o)

This is the backward transformation.
Using now the formula of the earlier memoir*

‘e’ M(ym N
— —_— — - GJ” _1 Ar
g’(a) ‘2>J0 +1(20) \//1
# < 0.8.H.,” p. b6.
VOL. CCXXIV.—A., ) 3 B
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(—V@/gﬁﬂ;wlﬁum um@

we find

I

Jus3 (b0/00) [c
/ (63]3c) & <a>

and similarly

AL 0) /()]

so that (I) and (II) become
Pn(:u,) q”(cl)

= TN Y S (T @ DR 0 0 0,,00) 5,0 00) B
- .. (II1) (99
P o) u(2) e

da

=2ra/2 £ @+ 0P n @) [ 0000 T Y

The first may be used when ¢ is small enough, and the second when ¢’ is small
enough—actually, though no proof is given, both are valid when the spheroids do not
intersect or enclose one another. They may even touch.

It is convenient to have a set of symbols to represent the integrals in III. We shall
write

Jo b c} T ¢ L11)

\n r

for the first, so that the second becomes

a b c

o
They are naturally simple generalisations of the function K,"(2) previously investigated,
but lacking the commutative property

K (2) = K,/ (4).

We shall not examine their analytical properties.

§22. Two Unequal Parallel Co-awial Discs at Constant Potentials.

We are now in a position to discuss this more general problem, and, as a preliminary,
we may suppose the discs to be spheroids of centres (0O,, O,), parameters (o', &)
respectively, and maintained at any constant potentials (V,, V).

The potential at any point may be taken to be

V=3P, ()6 )+ 200, @a©. . . . .. o)
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Applying the forward transformation, on the spheroid { = ¢, its value becomes

V= ? b,P, (1) ¢ (€o) +g «/% %(*)’ (2r + l)Prv(u)Pr(Co)Eo% {Z; " c}'

This must be constant and equal to V,. Thus we choose

boqo (Co) + «/bﬁoo(co)z%{gszc}:‘fz
by (€ «/b "2+ 1) (8 )% {Z;f; }=0(¢=1,2,...)f

Applying now the backward transformation, the potential at any point on the other
spheroid ¢’ == ¢, becomes

V=§"% () (%) 45 \/%

which must be constant and equal to V;. Thus we may also write

ao‘!o(co)"l“ Mbpo co)z (—)eb {ZZ C}V1 \L
o)+ A/ Lot 0p ) E s Lol <o |

These four relations serve readily to determine, by a rapid approximation, the leading
terms in the potential due to the spheroids when the central distance ¢ is large.
We pass, however, at once to the special case of discs of radii @ and b, with a view to an
exact reduction to integral equations.

In this case,

(102)

H 8

nr

@+ 17, (@) ) £ by (= {) % o]

(108)

L= 8 =0, Pon+1 (O) =0

and we see at once that the odd coefficients ag,+1, bs,+1 Vanish in the expression for the
potential. Moreover,

P2n (0)/q2 (0) = 2/, 1/0(0) = 2/

and the four formule become

fa 2 b a 2v
b=~ A/ Ean g gy o+ 2
b2 b o 2v
aoz_«/&%bzn{Qnoo}"]—_f;
b o b a
27"‘—(47“}_1) B%azn{zr 2%0 3
@y = —-(41*-1—1)«/%?62” {an é‘; c}
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The potential is, on the positive side,

V=5 {00, Pan (4) G20 (€) + ban P (1) 220 ()} (A)

— /\/(nw)j e‘““"’J (/19)72 g 4y (A0)
R M(’f;) j: e=J, () \/AZb‘”‘ Tonsy (2D)

V= M j e J, (o) {Mb al)e‘“—{—«/b}}‘(bl)}

where the functions f and F are given by

flaz) = 4/b % 9 I (77

or

F (b7) = /@2 by T oy (b0).
0

The exact solution of the problem is thus reduced to a determination of these functions
for substitution in (A), by means of the properties of the coefficients. We shall deduce
for them two simultaneous integral equations analogous to that of the previous problem.
© Two Simultaneous Integral Equations.—Using the mtegral expression

- d
RPN —

and its companion, with 7 and » interchanged, we find
ba, [~ d
— (47 +1) /\/&- % bznjog—cx,]znﬂ (02)J 3r4 (o) —g—
o d
_ (47 + 1) /\/% 20: aznjo e—cze]-gn.,.% (bw) Jg»,,_l“% (ax) -ag—;a

except when 7 = 0, in which case we add, on the right, 2V,/= and 2V,/~ respectively.
These become

b == AL ] (4 1) Ty (00} ST ) |
_Mb ~~de}?(bsc)(éi 1) T, (a2) r .. (104)
=— /3], =2 ‘“” (1) Ty (62)

-

respectively, with the necessary additions when 7 = 0. Let y be another variable
independent of z—the general mode of procedure is the same as that adopted for the
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simpler problem of equal discs—and multiply the equations respectively by J,,; (ay)
and J,,., (by), afterwards summing for all positive integral values of »» We thus find

2 2v, LAY d
£ 0Ty (o) = 23,09 — A/ (2)] e F 60) L8 0

2

(105)
& 2V _ d
$b,3s 00) = 228,04/ (7], e F ) 5 0)
where, when the variables are positive, and just excluding z =y,
S (8) = £ (4r + 1) Jur1s (82) Toris (B9)
_1 sinp(@ty)  sinpl@—y )}
by a previously quoted summation. These forms are equivalent to
flay) 2V 1 > o dx \‘
U200, a) = =2 A/ (5], e F 00) -O-G—Ka @)
F(by) 2V, 1 AV - (100)
?/ 2 _— . Z2 e
O 22,0 =~ 20/ (2)], oS @ Vo) By |
where
_sinB(z+y)  sinf(z—y)
Kg (2, 9) oty + T—7 R ¢ X114

and is a slight generalisation of the kernel of our previous integral equation, which
was the case p = 1.

These are the fundamental integral equations on which the solution depends.

In the first instance, let @ = b, so that the two discs are equal, but not of necessity
equally charged. Then

floy) 2V 3y(ay) 1 (7 e (e |
Viey)  w VY choe F( )¢( )K(” y),

Flay) 2Vydyay) _ _1[" .
Vo~ T = = L] o) Kot

In one very important special case, V, = — V;, where V; is the potential of the
disc of centre z = — ¢. Then by addition,

flay) -+ F (ay) = — _V.g_y) J - 'Jdi

o (F (a2) - f 0} K. (3, )

or, it is sufficient to take

Floy)=—f(ay), . . . . . . . . . (108)
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and the equations become

f(ay)__2_V_J_%(a_y)M1 we*cx' a dz x, 1 . e
Vi) w el 6 gl ) e

This is the problem of the condenser with equal and opposite charges on its plates.
In the case V, =V, the special case already discussed, we find in the same way,
by subtraction, that f(ay) = -+ F (ay), and

which 1s the same as

N L

where z = ay. This is our previous form, and if

J}zz) nqﬁ(z),.........(uo)

¢ (z) is the function already determined in the previous problems. The potential is,
however, now definite. We call this the problem of equally charged plates.
If as before

# (@) = 2 Gudun (2)]/2
the solution is, on the positive side,
Ve A3 [ e e i) flan) T,

or

VeaV, A/2 j T, (30) (L4 ) p(ah)da. . . . . (111)

This completes the previous investigation. At a great distance since ¢ (a2) is not
oscillatory, we can take it as a,J; (@2)/\/(a2) or @, (2/=)!, and V tends to become

v zav< n >

T

where (R;, Ry) are distances from the discs. The charge on each disc is therefore

T

24V,  12aV, [ / _@/ _7_z_> 112
Q=g = 2 LQo(p)Qo(tanh‘Lq tanh ©)d (112)
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(quoting the value of @) where ¢ is ¢/22. The charge on each disc required to give
them unit potential is therefore

Ql_lﬂj o (6) Q0<’oanh /ta h”“) L 1)
When ¢ > o, the integral tends to
1
[1Q (o) do =

and we obtain the usual capacity for a single disc.
In the problem of the condenser, if z = ay, the integral equation becomes

qS(x)—!f—/%):%j:docﬂw)e‘”’”K(x,z), Coe e (119)

differing only from the other problem by containing the parameter 1/z instead of
~— 1/ in the other. If this equation is solved, functions f and F are

f(ar)=—TF(a2). 2“:1 A p(al),
and the potential on the positive side is
V=aV,4/2 j e (e — 1) Ty (7) $(@h)dA. . . . . (115)

We shall return to this problem later.

§28. The General Problem of Two Equal Discs.

Whatever the potentials of the discs, the solution of this problem can be found from
those of the two fundamental cases outlined above, one of which is already completed.
For adding and subtracting the two integral equations with @ = b, we find

flay) +-F(ay) 2 +V,) Iy (ay) _ljme—cv;dx {F(“f/(w{) ax); K, (z, 9) 1|
b (116)

Ve myy V) =g

flay)—F(ay) 2 B 1"y flaz) - F () |
V(@y) 7Y (Vi Vo) Ju(ay) = 7?»]‘0 o V (az) K, (@ y), J

we thus have the functions f + F, f — F satistying respectively (1) the conditions for
the equal parallel plates at potential V, — V,, and (2) those for the condenser problem
with potential V, — V,at 2=10,and V, — Vy at 2 = —c.

If, therefore, we now solve the condenser problem, the general problem of parallel
equal conducting plates is completed.
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§ 24. The Condenser Problem.

In order to solve the equation
$2)— J@w%wjm”mwmea ="

we notice that, as in the earlier investigation—to which this discussion is very similar,
without the necessity of digressions in view of preceding work-—the equation

J{qﬁ(a}) \/(33) e"2qx¢(x)}1{(x,z)dx=0 N € 1))

is implied. Or if o
40 =2 Qo)

sinh gz

then, by a similar argument to the foregoing,
jJ{e—qu(¢) S“;”}K(x Nde=0. . . . . . (118)
0

which is the cardinal equation of this problem. Its solution is now, however, to be an
odd function Q (z). This will not constitute a solution unless it makes ¢ (z) expansible
in the form

b @) =2 4 Ty @)]/2

and, this being the case, the coefficients a,,, for all values of y, are given by

A dw Y dz

3 —qz —— ; —_

(2n) % az,ljo e~ sinh g .., (2) K (2, 9) NZ: jo sin 2K (, y) =

The reader who refers to our previous discussion of the earlier integral equation can
supply the intervening steps. - The equivalent of this formula is

(119)

© o 8 .
(Qn)’%Za%j e~ sinh gzJy, 4 (%) j Sin  cos ocxd—mw, .. (120)
0 0

dx
BV
where o must be capable of any value less than or equal to unity. Here we have,
as before, replaced K (, %) by an integral, and the coefficients a,, are to be independent
of a. :

This equation only differs superficially from a corresponding one arising in the other
problem by a change of cosh ¢« to sinh gz. But this simple change makes it impossible
to follow quite the same mode of solution, because the integral

08 ax dx
Sin 2
0 sinh gz @

does not converge. We cannot, therefore, get sinh gz to the other side of the equation
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directly, as we did with cosh ¢z previously. But sinh ¢z/x is an even function
finite at # = 0, which can be so dealt with, and we may, therefore, seelt a solution
of ‘
(’“ sin @

 inh gz cos axdr (0=aw=1). (121)(A)

\/(275) § Gon ‘. weﬁqu2n+:’5 (CU) Cos mm_‘lﬂ__ -
oo v

X

The integral on the left is

o (" —gz . dx 1 ’ 'y
- é@ju ¢ g4y (%) COS O"w:?j‘l‘; = o) {0 (g @) + qu0” (g —190)},

so that the equation becomes

S ae L g 1) - g0 (g — 10t = j Snr sdx
Za, q -+ L« , TATIES . cos oz dw
= Uz {q2" (¢ ) Gon (¢ )] , Sinh gz

. sing :

== | do ——~— fcosh (¢ |- 1a) x -} cosh (¢ — 1) &}

Ju sinh 2gx (¢ ) (¢ )l

by easy algebra. Here values of a,, must be found independent of «, or the method
fails. 1t is indicated that we should solve the simpler equation

AL "» o
= X g (g 1 1) == J TG osh (g-tra)wde . . . . (122)
0

o sinh 2qz

—a process which would be effective as a solution—or if ¢-}-tx ==, and @, Is
independent of ¢,

z Y sinw

}: 9 9, ! =D e ‘ — C )v l . . N . . [2:‘

5 (el (¢) J‘o sinh 2qu 08 Ap® O (123)

But it can be shown that although this leads, of necessity, to a solution, it is not

the solution we seek. (It has hydrodynamical applications not relevant in this memoir.)
The final test of any solution is as before, when g - oo,

o> 1, @, >0, (n # 0)

This was effective in the problem of two equally charged discs, and is equally able
to discriminate, and pick out the unique solution, in this case also.

Without further discussion of other artifices which may be suggested, and which
yield solutions not germane to our present object, we pass at once to the appropriate
solution, for brevity. '

We can write the equation

~o

— Sty {0 9) o (1 )} = |

sin

; cos ax dx
sinh gz

in the form

- 2‘ Aop {(I"n ((1 ) """ VED (([ - W)}

- sin - N o
j S sht g da {sinh[2g — (¢ + o))+ sinh [2g — (g — o))}

VOL., CCXXIV.—A., 3 ¢
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by simple algebra, and a solution is found by selecting the coefficients a,, to satisfy,
for all values of a variable o,

z “osine .
— 4 —_ B e . . . 2

% Ganf2n (P) L sinh g2 sinh (29 — p) v dx (124) (B)
This will appear later to be the proper artifice in this case. Before we proceed further,

however, we notice an important respect in which our procedure with this equation is
open to serious objection. For the integral

w .
. dx

sin xr Cos X —

0 e

is not of a type to which a differentiation of the form D/sin ¢D, (D = 8/d«) can be
applied obviously, as in the manner of transferring sinh gz to the other side of (A).
We can, however, evade this difficulty by introducing a parameter p, not greater than
¢, and considering, instead of (A), the equation

/ I - de (" . sinh po dw -
2r) Xa,, j e~ sinh pxd T) COS ax — = j SN & — — COS oL — 125
Vi )Aod = Jo P (2) Nz 0 sinh gz x (125)

as defining @,, in a more general mathematical problem, for all values of p between
zero and ¢. Then in the limit p == ¢ to which the analysis can be extended, we have

2, e dx ? . dx
V (27) X awj e~ sinh qzdy, (%) 008 wr—~ == | sin x cos ax—,
0 0 " 0

VT X

which is equation (A). The more general equation becomes

\/(2"7;) § Gan jm diJz;w—;(Z) {e(p_[l+m)x -+ elr—1—e o plop-ghwe Cm(p_q*w‘)"c}
- ,

0 \/96
{sinh (p - 12) & 4 sinh (p — 1a) x}.

o
1 [0 sinwdx
=4

2 )y z sinh qu
The left side becomes

L
2

< V8

Gan {_(17211(?“10 - W') + qm((l P + W‘) — Qan (2’ + q— W‘) - q%(p + q =+ "“)}

and the right can be transformed to

AW

d

sin x dx

o 2 sinh? qu {cosh (g +p +ra) @ — cosh (¢ —p — o) w + COSh (q+p-+r)a

—cosh (¢ —p - )z},

Differentiate with respect to «, and, for convenience, write

P e =gy, P T Lo == P
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There results the identity

o % a0 {Gan (9—01)+ o’ (g+01)— 02 (7—02) — 20" (qF02)} Wl
(P sinzde . . T . * L (126)
= L 2 Sh? gz {sinh (¢ + ¢,) # -+ sinh (¢ — p,) z — sinh (¢ — ¢,) = (

— sinh (g + p,) 2}> )
which is evidently satisfied if, for all values of ¢,

2 {ga (1 —0) (g 1-0)} = L %ﬁ%— {sinh(q-I-¢)a I sinh (g-—p) z}. (127)

This is the equation immediately preceding (B), from which the ensuing argument
follows as before—with only p - e for 1«, which is of no importance.

Thus our process is in fact valid for a much more general equation than that under
reviéw._ We continue, therefore, with equation (B), of the form

Y osinxde
— & Uaulfon = | o=y —e)x . . . . . (12
L Uaufon’ (p) == J 5 sinh? go sinh (2¢ —p) (128)
defining the coefficients @,,. The integral on the right can be evaluated, though
tediously..

Let it be called I, and write u = ¢ — p. Then

o

sinzdx ;. :

I = j —— = (sinh gz cosh uz -- cosh wx sinh wzx)
0

2 sinh? gz
® osh qx
%j S0 7 coshumdxw‘*%j Sm”mh““ o1 g
= Jo sinh gz 0 inh* gz
L dl
i, — 1%
2 dq’
where
I [ snosihurg, - p_ [feoshur g, g,
=) b DT ke

-—We are assuming, as we may by the arbitrary character of ¢, that the relative values
of ¢ and ¢ are such as to secure a finite set of integrals.
Now 1, is one of Porssox’s integrals, given by

I, = 2 ginh E/(coshy—t - cos Qﬂ),
29 q q q

and I, is the integral of another with regard to a parameter, and quoting this,

1 o s
I, = j i j S%nh U cos Az dz
o Jo sinh ¢z

== lqin@ " _da
29 ¢ Jo cosh Az /q |- cos ux [q

= tan~! <tanh ~ tan ’3’2>
2q 2q

3¢ 2
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after an easy reduction. Thus, finally,

7 sinh 7 /g 14 tan? <tanh Z tan @\),
\ 29  2¢q

—_ 3 ’ — —
% Gl (e) 4q " coshz/q +-cosunlg ?dg

where, after the differentiation, u is equated to ¢ — . The final result is, after further
reduction,

@ 7T Sinh JT 24 Sin 7T —0 Sinh T
- %‘ ([’Eu(]‘zn, (P) == /q - "i* P /q /(]

D .. 129
2qcosh o /g~ cosom/q  4¢* coshaz/qg — cos omt[q (129)

When p >, this becomes
® ,
— 2 azn(lﬁn (\O) i it
0
whence

%agﬂqgn (p) == cot™' o == ¢, (p),

from which
ay == 1, (g == G, == ... == O,

The fundamental test of the electrostatic problem is therefore satisfied.

Nevertheless, the expression is not possible as it stands, for on the right side the first
function is even in p and the second odd, while g¢s,(p) and therefore the left side, is
always even. But reference to the original argument by which this function was found
shows at once that it is equally valid with — p for p. The proper form we seek—which
still satisfies the condition when p > oo —is the mean of those from - and —p,

% Py T sinh 7 /q 130
o oo (e) 2qcosh w/qg —cos pnfqg = = T (130)

which is a possible expansion.

This could have been deduced more readily by selecting a simpler effective artifice
in the first place. But our present procedure is of value as an illustration of the
type of analysis involved in solving the integral equation with prescribed conditions as
p-> ®. The integrated form of the last equation is readily found as

& _, [tanh = /2q> ‘tan pm/2¢q\
> = tan ! | L) = =y . L (131
o a2nq2n (P) tan <tan pn/zq( 9o <tanh n/zq/, ( )

This may be compared with the corresponding formula for the coefficients ay, in the
problem of two equally charged plates—the only final difference is 2q for 4g, all the
later part of the solution of that problem being directly applicable with this simple
alteration. We do not need, therefore, to repeat the arguments relating to the validity
of the present expansion, and the mode by which the coefficients ay, are determined
from it. The general result with 2¢ for 4¢ will suffice, and we conclude that

(—)aan | Qui(e)do= [ Qu(e) Qultanh gan/2g/tanb j2q)do . . (132)
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and the general value of ¢ (z) in this problem is

¢>(n)::%a2n.]2n+%(m)/\/x C e .. (133)

in a series of orthogonal functions.

The a’s are also the coefficients in the expansion of the potential at any point in
spherical harmonics.

Also by analogy with the previous problem, the solution of the condenser problem
with discs at potentials =V, and at distance ¢ apart is, on the positive side,

2 @0
V=aV,\/ 2o o 1) T, () (a) 0
where
) 2 wdma (ad) [ , ‘tanh nat/c> / L ‘
b a2) = By me ) LQQ,, ) Qo(m dt {OQ% M. . (34)
§25. Capacity of the Double Disc Condenser.

At a very great distance, since 4 is a function of a non-exponential type, and ¢ is
small in comparison with z, we may write, for the leading terms in R-?, where R is
the distance from the origin,

V=—aV, /\/ J {$(0) - a2g’ (0) | ...} {20—-&;%%..4.}6*"’% (4p) d2

anfi the first term is

V——aV,o N/i é (0) j 2o, (Ap) da-

:avvlc«/gcﬁ(o)é%(%),

terminating what is essentially a spherical harmonic series with its first term, which
represents the effect of the condenser regarded as a simple doublet.
If the charges on the two discs are respectively +Q, we thus find

Q=aV, A/ 240

¢ (0) =a, [Ty (#)//%]oco = =

4

where

and quoting the value of @, in this case,

Q= 12aV j Q (t) Q, (tanh nat/c/tanh 7a/c) dt
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relating charge and potential of either disc. The capacity of the condenser is C = Q/2V],
or

:%’ FQO(t) Q, (tanh =at/cftanhmaje)dt . . . . . (135)

reducing to the proper result when ¢ >oo.
The integral cannot be evaluated in simple terms, but readily yields approximations
when (1) ¢ is large, (2) ¢ is small.

§ 26. Charged Disc n front of an Infinite Plane at Zero Potential.

The two discs of the condenser evidently produce zero potential over the plane
z = — % ¢ midway between them. The same solution is therefore valid for the problem
of a disc in front of such a plane, provided that ¢ now represents twice the distance of
disc from plane. We can therefore use the capacity formula for a disc parallel to a much
larger disc, with this understanding regarding ¢. The result is of special importance
when c/a is small, if @ is the radius of the smaller disc.

§ 27. Coefficients of Capacity and Induction of Two Equal Parallel Discs.

Reverting now to the general problem of two equal discs, that at 2 = 0 with potential
V,, and that at z = — ¢ with potential V,, we recall the functions f, ¥, where the whole
potential produced when z is positive becomes :

V= \/j e+ T, (29) S1 «/ la)er T . . . (136)

Moreover, in the condenser problem, with potential —V; on the right (z = 0) and
-V, on the left, : ‘

Jlad)\/ == Vs $1 (ad)

where ¢, has just been determined, and in the two disc problem of equal potential V,,

[ (@0 /3 =2V s (02)

¢, being the previous ¢ function.

These define f for the two cases. We have seen, moreover, that if (f, ) relate to
the general case, f+ F is the function for the equally charged plates each of
potential V; - V, = V,, and f — F is the function for the condenser with V; — V, =V,
Accordingly

FHT =2V, 4 Vo) g (a) |
| (137)
J=F =22 (V= Vo) $u (ad) |
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whence ‘
SV )V (b — 4) ‘[

all [

‘C;“'““Vl( "952) "‘V (‘751+¢) I

(138)

When the discs have potentials (V,, V,) they therefore produce an external potential
on the right, equal to

V = ,\/(“‘zn)j‘:e““.jo (26) %%{6~ACV1 (¢1 '+‘ (!’2) ‘+ e“"“Vz (¢1 — (/)2)
‘ +V, (‘/51 — ‘/’2) -1V, ((/’1 -+ (ﬁ;)}, (139)

where @ 18 the argument of ¢, and of ¢,, and

by (ad) = %:( ),,JQM (al)j Qun (1) Q (tdnh n:at/c) ‘/j: Qo () dt, . (140)

v/ (ak) tanh na/c
and ¢, (@A) is the same function with 2¢ for c.
Let N -
by (0) = @) @y by (0)= 20, . . . . . (141)

Then taking the leading terms in the integral, the potential at a great distance
(R; and R, from the discs) is

V——-{V2(b ~ @) + Vi (by +%}+-~{V1(b + Ve (by + @)},

whence the charges are

Qi =LV, (bt ) + Va (b, — )} ‘L

. (142)
Q= 4Vt ta) Vs =) |
The coefficients of capacity and induction are therefore known, for
Ay = 7%[ Q, (1) Q, (tanh mat/cftanh mafe)dt. . . . . . (143)
by = % J ) ]QO (1) Q, (tanh nat/Qc/tanh maf2c)dt. . . . . (1\44)

§28. The Problem of Three Parallel Discs at Potentials Vy, V,, V.

We may finally indicate how the solution of these problems can proceed further,
without giving the detailed analysis. Let the three discs have radii («, B, v), and
have their centres at 2 = — ¢;, z = 0, z == -} ¢, respectively. Measured with reference
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to these centres, the spheroidal co-ordinates of an external point will be («', '), (1, %)
(«', C") respectively.

Let the potential at P be given by the formula, satisfying the conditions of the usual
type—such as vanishing at infinity—-

V= % {afnl)n(l“,) q'n(z’) =+ b'n]')n(zd) Un (C) "Ifﬁcnl)n(;“”) (]n<cn)- Ce (145>
0

On the central disc, this becomes

%8

£ (=Y @+ 1)) p0) £ a, M;’:{;, 3

5 2@ p(0) & (=ran/ 0T o)

=0

V o 53 b,.];)r(/“) (])‘(C) ~g—

-

NJ]

>

where the forward transformation through a distance ¢; gives rise to one series and the
backward transformation through ¢, to the other.

This must be eqmﬂ to V, when % == 0, whence since pg,,,(0) == 0, we find by, = 0,
and with ¢,(0) = @/2, ps,(0)/¢s(0) = 2/x, we find further that

SRV IOV TN S

IRV TR R R TERIPVASTE A AT

(r==1,2,3...)

. (146)

N

On the disc of potential V,, using the backward transformation in one case through
¢;, and, in the other, through ¢, 4 ¢,, we find

V = ZaP(M)qr( )+27.Z (c}, | 1)1)( )])r °‘?, n “/\/B i@ ‘,

48

}a

n s

(Zerl)P( ) ()

Nld

s — —

and equating this to V;, when ¢’ = 0, we readily find

b A/EE rn s baf b A/ TECrall T atal =2V,
iy | (4 1) \/ ES -y {;‘] ¢ cl} L (147)
474«1)\/ ”Udf M cl+og}_o )
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For the third disc, we apply the forward transformation twice. It is not necessary
to write down the ensuing value of V on this disc, but the final conditions become

02r+] =0 }

“$a, i T ¢ - by, 1B 2 o

Gy -+ «/Y%dn{nﬂﬁ F Co +M { 2} “nvs I}.(148)
1

(4 - a0, 1% Y o - (L Bgp By o1

Cor + (47 - 1) /\/y%an{n op &1 +'02}'T<47 - 1) /\/Y%b”{n 27'02}_{})

The generalisation of these six coefficient relations to any number of discs is clear
now by inspection, and they can be used for approximations when the discs are far
apart, in regard to coefficients of capacity and induction of such a system. The
potential is ‘

V =

oMg

{a2r:[)27' (:“) q2r (CI) "i" "'I" ...}

where each of the three terms transforms as usual into a definite integral. In front
of the foremost disc at z = ¢,,

V— M j Ty ( ap) L S g2y (1) €

+ B ba/BT0r1y (18) + 0/ Y Tar, () €4}
—also admitting an immediate generalisation to any number of such discs. Writing
fi(h0) = % a0, Jars (A2),  fo(AB) = %bz,Jw(w), fo(hy) = %cz,JM (iy) . (149)

we obtain

~ 00

V= A/ 2] e 30 U0) Lo {/afi (im) o /8 (38) + /2 fa () )
0 A/

We may now return to the six equations among the coefficients, in order to form:
integral equations. With

oy | _ (% e dw
{p q } - L ¢ Jp+% (d‘x) Jq+§ (Y$)'5;
we find in the usual way,
Ay = ) /\/ J —cn 47‘ +]) J2r+§ CX$)J> E bZnJ2n+} (Bx)

_ M_E J -<c,+c>7dx{(47 +1 )Jw(m)}?cm,J%H(m) . (150)

VOL. CCXXIV.—A. 3 D
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with an additional 2V, /x if r == 0. Or
© B d .
== A/E[ ey (6 D @+ 1) Ty (00)
— AL e )2 1) Gy ). (15D
Let y be a new variable independent of x, multiply by Jo,..: (2y) and sum for all

integral values of .
We obtain the integral equation

frloy) 2V g v 1 BT dx
VY :,z\/yJé(Q?/)‘~ ;/\/;Le fz(@m):/—xKa(way)
1 M e~ (cl+z'a)m Yﬂ):‘i“‘K (gg, 9/)’ . (152)

which is the first of three for the determination of the functions fi, fa, f;. The others
are evidently

f2(By) 2V, _ __l o [ -—qz ) 92
\/?/ n\/?/J (B?/) Bj jx )\/ Kﬂ(x Z/)
dx

IA/ [, el ) DL (o), (159

‘f3 (Yy) — 2“73 — 1 o ” — (e~ d;l}
«/?/ - \/?/ J,% ('Y?/) = 7_5 :; L e % fl (cc’c) Ky ({1;, Y)

—2A/E e h o) SR (), 54

'\{‘

and the generalisation to # discs is still evident.
We do not pursue the detailed solution of simple cases, which can be effected.

§29. The Value of a Definite Integral.

If it be desired to pursue the general theory for unequal discs on the lines of our
first discussion of the integral equation, a definite integral is of great value.
We may show that

[ Kt K ) = Ky (,0) i b< a}
0 .o
=K, (z,t) if a<b

(155)

Tor the product K, (z, y) K, (¢, ¢) consists of four terms of whioh the first is
[sin a (@ + ) sin b (y + )] (e + ) (y + ¥).
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The integral of this is

ji j dy sin a (4 y) sin b (y + ){@/—}—x“y}i-t}

1 sin aX _. . _ ("sin ba .
“t——fc{L - sin b (A 4t — ) dx L sina (4 -+2 t)dﬂwk

Another term has a change of sign in = and ¢, and its integral is

_*_1_{{ Slf;“’nmb(z —t— @) da+ [ Sin}vblsina(l — 1) dz}.

t—a —t

The sum of the two integrals becomes

90

sinb(i~x)j

sin a2 cos bA %ﬂ‘ —gina (x — t)j sin b2 cos ol %ﬁ}
0 0 ]

Now if @ < b,

j sin ad cos bi di_ 0, f sin bA cos al i _ 7,
0 A 0 A

so that the sum is :
. sin b (¢ -+ x)

2
t+x

where b is the smaller of the quantities (@, b). The other pair of integrals differ only
in the sign of  or ¢, and yield as their sum,

L5 b (4 :c))
t+x

so that the whole integral is K, (x, ).
This theorem is essentially the same as one given by HarDY.
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